α
Research
Alpha Leak
Conferences
Topics
Top Authors
Rankings
Browse All
EN
中
Home
/
Authors
/
Guy Van den Broeck
Guy Van den Broeck
1
Affiliations
Affiliations
University of California, Los Angeles
20
papers
432
total citations
papers (20)
Semantic Probabilistic Layers for Neuro-Symbolic Learning
NEURIPS 2022
arXiv
107
citations
Counterexample-Guided Learning of Monotonic Neural Networks
NEURIPS 2020
arXiv
63
citations
Accelerating Diffusion LLMs via Adaptive Parallel Decoding
NEURIPS 2025
arXiv
44
citations
Tractable Regularization of Probabilistic Circuits
NEURIPS 2021
arXiv
40
citations
Image Inpainting via Tractable Steering of Diffusion Models
ICLR 2024
arXiv
31
citations
Probabilistically Rewired Message-Passing Neural Networks
ICLR 2024
arXiv
26
citations
Sparse Probabilistic Circuits via Pruning and Growing
NEURIPS 2022
arXiv
23
citations
Learning to Discretize Denoising Diffusion ODEs
ICLR 2025
arXiv
19
citations
A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints
NEURIPS 2023
arXiv
19
citations
Scaling Tractable Probabilistic Circuits: A Systems Perspective
ICML 2024
arXiv
18
citations
On the Relationship Between Monotone and Squared Probabilistic Circuits
AAAI 2025
arXiv
13
citations
Collapsed Inference for Bayesian Deep Learning
NEURIPS 2023
arXiv
10
citations
Controllable Generation via Locally Constrained Resampling
ICLR 2025
arXiv
9
citations
TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation
ICML 2025
4
citations
Plug-and-Play Context Feature Reuse for Efficient Masked Generation
NEURIPS 2025
arXiv
4
citations
Rao-Blackwell Gradient Estimators for Equivariant Denoising Diffusion
NEURIPS 2025
arXiv
2
citations
Tractable Transformers for Flexible Conditional Generation
ICML 2025
arXiv
0
citations
Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations
NEURIPS 2020
0
citations
A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference
NEURIPS 2021
0
citations
A Unified Approach to Count-Based Weakly Supervised Learning
NEURIPS 2023
0
citations