BridgePure: Limited Protection Leakage Can Break Black-Box Data Protection

0
citations
#3347
in NEURIPS 2025
of 5858 papers
5
Top Authors
7
Data Points

Abstract

Availability attacks, or unlearnable examples, are defensive techniques that allow data owners to modify their datasets in ways that prevent unauthorized machine learning models from learning effectively while maintaining the data's intended functionality. It has led to the release of popular black-box tools (e.g., APIs) for users to upload personal data and receive protected counterparts. In this work, we show that such black-box protections can be substantially compromised if a small set of unprotected in-distribution data is available. Specifically, we propose a novel threat model of protection leakage, where an adversary can (1) easily acquire (unprotected, protected) pairs by querying the black-box protections with a small unprotected dataset; and (2) train a diffusion bridge model to build a mapping between unprotected and protected data. This mapping, termed BridgePure, can effectively remove the protection from any previously unseen data within the same distribution. BridgePure demonstrates superior purification performance on classification and style mimicry tasks, exposing critical vulnerabilities in black-box data protection. We suggest that practitioners implement multi-level countermeasures to mitigate such risks.

Citation History

Jan 25, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Jan 28, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0