Interpreting vision transformers via residual replacement model

1
citations
#2497
in NEURIPS 2025
of 5858 papers
6
Top Authors
6
Data Points

Abstract

How do vision transformers (ViTs) represent and process the world? This paper addresses this long-standing question through the first systematic analysis of 6.6K features across all layers, extracted via sparse autoencoders, and by introducing the residual replacement model, which replaces ViT computations with interpretable features in the residual stream. Our analysis reveals not only a feature evolution from low-level patterns to high-level semantics, but also how ViTs encode curves and spatial positions through specialized feature types. The residual replacement model scalably produces a faithful yet parsimonious circuit for human-scale interpretability by significantly simplifying the original computations. As a result, this framework enables intuitive understanding of ViT mechanisms. Finally, we demonstrate the utility of our framework in debiasing spurious correlations.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
1+1
Feb 13, 2026
1