TESTING STATIONARITY AND CHANGE POINT DETECTION IN REINFORCEMENT LEARNING

14citations
arXiv:2203.01707
14
citations
#460
in NEURIPS 2025
of 5858 papers
4
Top Authors
5
Data Points

Abstract

We consider reinforcement learning (RL) in possibly nonstationary environments. Many existing RL algorithms in the literature rely on the stationarity assumption that requires the state transition and reward functions to be constant over time. However, this assumption is restrictive in practice and is likely to be violated in a number of applications, including traffic signal control, robotics and mobile health. In this paper, we develop a modelfree test to assess the stationarity of the optimal Q-function based on pre-collected historical data, without additional online data collection. Based on the proposed test, we further develop a change point detection method that can be naturally coupled with existing state-of-the-art RL methods designed in stationary environments for online policy optimization in nonstationary environments. The usefulness of our method is illustrated by theoretical results, simulation studies, and a real data example from the 2018 Intern Health Study. A Python implementation of the proposed procedure is publicly available at https://github.com/limengbinggz/CUSUM-RL.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
14+14