DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment

1
citations
#2497
in NEURIPS 2025
of 5858 papers
4
Top Authors
6
Data Points

Abstract

How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding steps. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
1+1
Feb 13, 2026
1