Context-Aware Hierarchical Learning: A Two-Step Paradigm towards Safer LLMs

0
citations
#3347
in NEURIPS 2025
of 5858 papers
7
Top Authors
7
Data Points

Abstract

Large Language Models (LLMs) have emerged as powerful tools for diverse applications. However, their uniform token processing paradigm introduces critical vulnerabilities in instruction handling, particularly when exposed to adversarial scenarios. In this work, we identify and propose a novel class of vulnerabilities, termed Tool-Completion Attack (TCA), which exploits function-calling mechanisms to subvert model behavior. To evaluate LLM robustness against such threats, we introduce the Tool-Completion benchmark, a comprehensive security assessment framework, which reveals that even state-of-the-art models remain susceptible to TCA, with surprisingly high attack success rates. To address these vulnerabilities, we introduce Context-Aware Hierarchical Learning (CAHL), a sophisticated mechanism that dynamically equilibrates semantic comprehension with role-specific instruction constraints. CAHL leverages the contextual correlations between different instruction segments to establish a robust, context-aware instruction hierarchy. Extensive experiments demonstrate that CAHL significantly enhances LLM robustness against both conventional attacks and the proposed TCA, exhibiting strong generalization capabilities in zero-shot evaluations while still preserving model performance on generic tasks. Our code is available at https://github.com/S2AILab/CAHL.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0