Evaluating and Learning Optimal Dynamic Treatment Regimes under Truncation by Death
0citations
arXiv:2510.075010
citations
#3347
in NEURIPS 2025
of 5858 papers
3
Top Authors
7
Data Points
Top Authors
Topics
Abstract
Truncation by death, a prevalent challenge in critical care, renders traditional dynamic treatment regime (DTR) evaluation inapplicable due to ill-defined potential outcomes. We introduce a principal stratification-based method, focusing on the always-survivor value function. We derive a semiparametrically efficient, multiply robust estimator for multi-stage DTRs, demonstrating its robustness and efficiency. Empirical validation and an application to electronic health records showcase its utility for personalized treatment optimization.
Citation History
Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0
Feb 3, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0