Learning Theory for Kernel Bilevel Optimization

0
citations
#3347
in NEURIPS 2025
of 5858 papers
4
Top Authors
6
Data Points

Abstract

Bilevel optimization has emerged as a technique for addressing a wide range of machine learning problems that involve an outer objective implicitly determined by the minimizer of an inner problem. While prior works have primarily focused on the parametric setting, a learning-theoretic foundation for bilevel optimization in the nonparametric case remains relatively unexplored. In this paper, we take a first step toward bridging this gap by studying Kernel Bilevel Optimization (KBO), where the inner objective is optimized over a reproducing kernel Hilbert space. This setting enables rich function approximation while providing a foundation for rigorous theoretical analysis. In this context, we derive novel finite-sample generalization bounds for KBO, leveraging tools from empirical process theory. These bounds further allow us to assess the statistical accuracy of gradient-based methods applied to the empirical discretization of KBO. We numerically illustrate our theoretical findings on a synthetic instrumental variable regression task.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0