Disentangling Hyperedges through the Lens of Category Theory

0
citations
#3347
in NEURIPS 2025
of 5858 papers
6
Top Authors
6
Data Points

Abstract

Despite the promising results of disentangled representation learning in discovering latent patterns in graph-structured data, few studies have explored disentanglement for hypergraph-structured data. Integrating hyperedge disentanglement into hypergraph neural networks enables models to leverage hidden hyperedge semantics, such as unannotated relations between nodes, that are associated with labels. This paper presents an analysis of hyperedge disentanglement from a category-theoretical perspective and proposes a novel criterion for disentanglement derived from the naturality condition. Our proof-of-concept model experimentally showed the potential of the proposed criterion by successfully capturing functional relations of genes (nodes) in genetic pathways (hyperedges).

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0