H-SPLID: HSIC-based Saliency Preserving Latent Information Decomposition

0
citations
#3347
in NEURIPS 2025
of 5858 papers
8
Top Authors
7
Data Points

Abstract

We introduce H-SPLID, a novel algorithm for learning salient feature representations through the explicit decomposition of salient and non-salient features into separate spaces. We show that H-SPLID promotes learning low-dimensional, task-relevant features. We prove that the expected prediction deviation under input perturbations is upper-bounded by the dimension of the salient subspace and the Hilbert-Schmidt Independence Criterion (HSIC) between inputs and representations. This establishes a link between robustness and latent representation compression in terms of the dimensionality and information preserved. Empirical evaluations on image classification tasks show that models trained with H-SPLID primarily rely on salient input components, as indicated by reduced sensitivity to perturbations affecting non-salient features, such as image backgrounds. Our code is available at https://github.com/neu-spiral/H-SPLID.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0
Feb 3, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0