Learning Juntas under Markov Random Fields

1
citations
#2497
in NEURIPS 2025
of 5858 papers
2
Top Authors
7
Data Points

Abstract

We give an algorithm for learning $O(\log n)$ juntas in polynomial-time with respect to Markov Random Fields (MRFs) in a smoothed analysis framework where only the external field has been randomly perturbed. This is a broad generalization of the work of Kalai and Teng, who gave an algorithm that succeeded with respect to smoothed product distributions (i.e., MRFs whose dependency graph has no edges). Our algorithm has two phases: (1) an unsupervised structure learning phase and (2) a greedy supervised learning algorithm. This is the first example where algorithms for learning the structure of an undirected graphical model lead to provably efficient algorithms for supervised learning.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0
Feb 3, 2026
0
Feb 13, 2026
1+1
Feb 13, 2026
1
Feb 13, 2026
1