Sample-Conditional Coverage in Split-Conformal Prediction

0citations
0
citations
#3347
in NEURIPS 2025
of 5858 papers
1
Top Authors
5
Data Points

Top Authors

Abstract

We revisit the problem of constructing predictive confidence sets for which we wish to obtain some type of conditional validity. We provide new arguments showing how ``split conformal'' methods achieve near desired coverage levels with high probability, a guarantee conditional on the validation data rather than marginal over it. In addition, we directly consider (approximate) conditional coverage, where, e.g., conditional on a covariate $X$ belonging to some group of interest, we seek a guarantee that a predictive set covers the true outcome $Y$. We show that the natural method of performing quantile regression on a held-out (validation) dataset yields minimax optimal guarantees of coverage in these cases. Complementing these positive results, we also provide experimental evidence highlighting work that remains to develop computationally efficient valid predictive inference methods.

Citation History

Jan 26, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Feb 1, 2026
0
Feb 6, 2026
0