The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio

30citations
arXiv:2410.12787
30
citations
#203
in NEURIPS 2025
of 5858 papers
10
Top Authors
7
Data Points

Abstract

Recent advancements in large multimodal models (LMMs) have significantly enhanced performance across diverse tasks, with ongoing efforts to further integrate additional modalities such as video and audio. However, most existing LMMs remain vulnerable to hallucinations, the discrepancy between the factual multimodal input and the generated textual output, which has limited their applicability in various real-world scenarios. This paper presents the first systematic investigation of hallucinations in LMMs involving the three most common modalities: language, visual, and audio. Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations. To address these challenges, we introduce the benchmark The Curse of Multi-Modalities (CMM), which comprehensively evaluates hallucinations in LMMs, providing a detailed analysis of their underlying issues. Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning and enhanced hallucination mitigation strategies. Based on our observations and findings, we suggest potential research directions that could enhance the reliability of LMMs.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
26+26
Feb 3, 2026
27+1
Feb 13, 2026
30+3
Feb 13, 2026
30
Feb 13, 2026
30