CraftRTL: High-quality Synthetic Data Generation for Verilog Code Models with Correct-by-Construction Non-Textual Representations and Targeted Code Repair

44
citations
#377
in ICLR 2025
of 3827 papers
4
Top Authors
7
Data Points

Abstract

Despite the significant progress made in code generation with large language models, challenges persist, especially with hardware description languages such as Verilog. This paper first presents an analysis of fine-tuned LLMs on Verilog coding, with synthetic data from prior methods. We identify two main issues: difficulties in handling non-textual representations (Karnaugh maps, state-transition diagrams and waveforms) and significant variability during training with models randomly making ''minor'' mistakes. To address these limitations, we enhance data curation by creating correct-by-construction data targeting non-textual representations. Additionally, we introduce an automated framework that generates error reports from various model checkpoints and injects these errors into open-source code to create targeted code repair data. Our fine-tuned Starcoder2-15B outperforms prior state-of-the-art results by 3.8\%, 10.9\%, 6.6\% for pass@1 on VerilogEval-Machine, VerilogEval-Human, and RTLLM.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
44+44
Feb 13, 2026
44
Feb 13, 2026
44