A Universal Scale-Adaptive Deformable Transformer for Image Restoration across Diverse Artifacts

0citations
0
citations
#2482
in CVPR 2025
of 2873 papers
4
Top Authors
5
Data Points

Abstract

Structured artifacts are semi-regular, repetitive patterns that closely intertwine with genuine image content, making their removal highly challenging. In this paper, we introduce the Scale-Adaptive Deformable Transformer, an network architecture specifically designed to eliminate such artifacts from images. The proposed network features two key components: a scale-enhanced deformable convolution module for modeling scale-varying patterns with abundant orientations and potential distortions, and a scale-adaptive deformable attention mechanism for capturing long-range relationships among repetitive patterns with different sizes and non-uniform spatial distributions. Extensive experiments show that our network consistently outperforms state-of-the-art methods in diverse artifact removal tasks, including image deraining, image demoiréing, and image debanding.

Citation History

Jan 26, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Feb 1, 2026
0
Feb 6, 2026
0