Sensitivity-Aware Amortized Bayesian Inference

19
citations
#926
in ICLR 2025
of 3827 papers
6
Top Authors
7
Data Points

Abstract

Sensitivity analyses reveal the influence of various modeling choices on the outcomes of statistical analyses. While theoretically appealing, they are overwhelmingly inefficient for complex Bayesian models. In this work, we propose sensitivity-aware amortized Bayesian inference (SA-ABI), a multifaceted approach to efficiently integrate sensitivity analyses into simulation-based inference with neural networks. First, we utilize weight sharing to encode the structural similarities between alternative likelihood and prior specifications in the training process with minimal computational overhead. Second, we leverage the rapid inference of neural networks to assess sensitivity to data perturbations and preprocessing steps. In contrast to most other Bayesian approaches, both steps circumvent the costly bottleneck of refitting the model for each choice of likelihood, prior, or data set. Finally, we propose to use deep ensembles to detect sensitivity arising from unreliable approximation (e.g., due to model misspecification). We demonstrate the effectiveness of our method in applied modeling problems, ranging from disease outbreak dynamics and global warming thresholds to human decision-making. Our results support sensitivity-aware inference as a default choice for amortized Bayesian workflows, automatically providing modelers with insights into otherwise hidden dimensions.

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
19+19
Feb 13, 2026
19
Feb 13, 2026
19