Structured Packing in LLM Training Improves Long Context Utilization

16
citations
#250
in AAAI 2025
of 3028 papers
7
Top Authors
4
Data Points

Abstract

Recent advancements in long-context large language models have attracted significant attention, yet their practical applications often suffer from suboptimal context utilization. This study investigates structuring training data to enhance semantic interdependence, demonstrating that this approach effectively improves context utilization. To this end, we introduce the Structured Packing for Long Context (SPLiCe) method, which utilizes retrieval to collate mutually relevant documents into long and coherent training examples. We validate SPLiCe empirically across models of varying sizes -- 3B, 7B, and 13B -- achieving improved performance in long-context tasks, such as Qasper and HotpotQA. Remarkably, even brief fine-tuning with SPLiCe is sufficient to realize these benefits. Additionally, SPLiCe effectively mitigates the lost-in-middle phenomenon often observed in large models. Our comprehensive analysis of SPLiCe explores its design choices and reveals intriguing transfer effects; for instance, training on programming code enhances performance on natural language tasks.

Citation History

Jan 28, 2026
16
Feb 13, 2026
16
Feb 13, 2026
16
Feb 13, 2026
16