PA2D-MORL: Pareto Ascent Directional Decomposition Based Multi-Objective Reinforcement Learning

6citations
6
citations
#1138
in AAAI 2024
of 2289 papers
2
Top Authors
2
Data Points

Abstract

Multi-objective reinforcement learning (MORL) provides an effective solution for decision-making problems involving conflicting objectives. However, achieving high-quality approximations to the Pareto policy set remains challenging, especially in complex tasks with continuous or high-dimensional state-action space. In this paper, we propose the Pareto Ascent Directional Decomposition based Multi-Objective Reinforcement Learning (PA2D-MORL) method, which constructs an efficient scheme for multi-objective problem decomposition and policy improvement, leading to a superior approximation of Pareto policy set. The proposed method leverages Pareto ascent direction to select the scalarization weights and computes the multi-objective policy gradient, which determines the policy optimization direction and ensures joint improvement on all objectives. Meanwhile, multiple policies are selectively optimized under an evolutionary framework to approximate the Pareto frontier from different directions. Additionally, a Pareto adaptive fine-tuning approach is applied to enhance the density and spread of the Pareto frontier approximation. Experiments on various multi-objective robot control tasks show that the proposed method clearly outperforms the current state-of-the-art algorithm in terms of both quality and stability of the outcomes.

Citation History

Jan 27, 2026
5
Feb 13, 2026
6+1