Generating 6DoF Object Manipulation Trajectories from Action Description in Egocentric Vision

2
citations
#1998
in CVPR 2025
of 2873 papers
4
Top Authors
7
Data Points

Abstract

Learning to use tools or objects in common scenes, particularly handling them in various ways as instructed, is a key challenge for developing interactive robots. Training models to generate such manipulation trajectories requires a large and diverse collection of detailed manipulation demonstrations for various objects, which is nearly unfeasible to gather at scale. In this paper, we propose a framework that leverages large-scale ego- and exo-centric video datasets -- constructed globally with substantial effort -- of Exo-Ego4D to extract diverse manipulation trajectories at scale. From these extracted trajectories with the associated textual action description, we develop trajectory generation models based on visual and point cloud-based language models. In the recently proposed egocentric vision-based in-a-quality trajectory dataset of HOT3D, we confirmed that our models successfully generate valid object trajectories, establishing a training dataset and baseline models for the novel task of generating 6DoF manipulation trajectories from action descriptions in egocentric vision.

Citation History

Jan 24, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
2+2
Feb 13, 2026
2
Feb 13, 2026
2