Honeybee: Locality-enhanced Projector for Multimodal LLM

208citations
arXiv:2312.06742
208
citations
#110
in CVPR 2024
of 2716 papers
4
Top Authors
4
Data Points

Abstract

In Multimodal Large Language Models (MLLMs), a visual projector plays a crucial role in bridging pre-trained vision encoders with LLMs, enabling profound visual understanding while harnessing the LLMs' robust capabilities. Despite the importance of the visual projector, it has been relatively less explored. In this study, we first identify two essential projector properties: (i) flexibility in managing the number of visual tokens, crucial for MLLMs' overall efficiency, and (ii) preservation of local context from visual features, vital for spatial understanding. Based on these findings, we propose a novel projector design that is both flexible and locality-enhanced, effectively satisfying the two desirable properties. Additionally, we present comprehensive strategies to effectively utilize multiple and multifaceted instruction datasets. Through extensive experiments, we examine the impact of individual design choices. Finally, our proposed MLLM, Honeybee, remarkably outperforms previous state-of-the-art methods across various benchmarks, including MME, MMBench, SEED-Bench, and LLaVA-Bench, achieving significantly higher efficiency. Code and models are available at https://github.com/kakaobrain/honeybee.

Citation History

Jan 28, 2026
0
Feb 13, 2026
207+207
Feb 13, 2026
208+1
Feb 13, 2026
208