Quaffure: Real-Time Quasi-Static Neural Hair Simulation

9
citations
#914
in CVPR 2025
of 2873 papers
7
Top Authors
7
Data Points

Abstract

Realistic hair motion is crucial for high-quality avatars, but it is often limited by the computational resources available for real-time applications. To address this challenge, we propose a novel neural approach to predict physically plausible hair deformations that generalizes to various body poses, shapes, and hairstyles. Our model is trained using a self-supervised loss, eliminating the need for expensive data generation and storage. We demonstrate our method's effectiveness through numerous results across a wide range of pose and shape variations, showcasing its robust generalization capabilities and temporally smooth results. Our approach is highly suitable for real-time applications with an inference time of only a few milliseconds on consumer hardware and its ability to scale to predicting the drape of 1000 grooms in 0.3 seconds. Please see our project page here following https://tuurstuyck.github.io/quaffure/quaffure.html

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
9+9
Feb 13, 2026
9
Feb 13, 2026
9