Revisiting Adversarial Training Under Long-Tailed Distributions

18
citations
#1352
in CVPR 2024
of 2716 papers
4
Top Authors
4
Data Points

Abstract

Deep neural networks are vulnerable to adversarial attacks, often leading to erroneous outputs. Adversarial training has been recognized as one of the most effective methods to counter such attacks. However, existing adversarial training techniques have predominantly been tested on balanced datasets, whereas real-world data often exhibit a long-tailed distribution, casting doubt on the efficacy of these methods in practical scenarios. In this paper, we delve into adversarial training under long-tailed distributions. Through an analysis of the previous work "RoBal", we discover that utilizing Balanced Softmax Loss alone can achieve performance comparable to the complete RoBal approach while significantly reducing training overheads. Additionally, we reveal that, similar to uniform distributions, adversarial training under long-tailed distributions also suffers from robust overfitting. To address this, we explore data augmentation as a solution and unexpectedly discover that, unlike results obtained with balanced data, data augmentation not only effectively alleviates robust overfitting but also significantly improves robustness. We further investigate the reasons behind the improvement of robustness through data augmentation and identify that it is attributable to the increased diversity of examples. Extensive experiments further corroborate that data augmentation alone can significantly improve robustness. Finally, building on these findings, we demonstrate that compared to RoBal, the combination of BSL and data augmentation leads to a +6.66% improvement in model robustness under AutoAttack on CIFAR-10-LT. Our code is available at https://github.com/NISPLab/AT-BSL .

Citation History

Jan 28, 2026
17
Feb 13, 2026
18+1
Feb 13, 2026
18
Feb 13, 2026
18