Sequential Modeling Enables Scalable Learning for Large Vision Models

235citations
arXiv:2312.00785
235
citations
#96
in CVPR 2024
of 2716 papers
8
Top Authors
4
Data Points

Abstract

We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, "visual sentences", in which we can represent raw images and videos as well as annotated data sources such as semantic segmentations and depth reconstructions without needing any meta-knowledge beyond the pixels. Once this wide variety of visual data (comprising 420 billion tokens) is represented as sequences, the model can be trained to minimize a cross-entropy loss for next token prediction. By training across various scales of model architecture and data diversity, we provide empirical evidence that our models scale effectively. Many different vision tasks can be solved by designing suitable visual prompts at test time.

Citation History

Jan 27, 2026
230
Feb 13, 2026
235+5
Feb 13, 2026
235
Feb 13, 2026
235