Revisiting Adversarial Training at Scale

34citations
arXiv:2401.04727
34
citations
#822
in CVPR 2024
of 2716 papers
4
Top Authors
3
Data Points

Abstract

The machine learning community has witnessed a drastic change in the training pipeline, pivoted by those ''foundation models'' with unprecedented scales. However, the field of adversarial training is lagging behind, predominantly centered around small model sizes like ResNet-50, and tiny and low-resolution datasets like CIFAR-10. To bridge this transformation gap, this paper provides a modern re-examination with adversarial training, investigating its potential benefits when applied at scale. Additionally, we introduce an efficient and effective training strategy to enable adversarial training with giant models and web-scale data at an affordable computing cost. We denote this newly introduced framework as AdvXL. Empirical results demonstrate that AdvXL establishes new state-of-the-art robust accuracy records under AutoAttack on ImageNet-1K. For example, by training on DataComp-1B dataset, our AdvXL empowers a vanilla ViT-g model to substantially surpass the previous records of $l_{\infty}$-, $l_{2}$-, and $l_{1}$-robust accuracy by margins of 11.4%, 14.2% and 12.9%, respectively. This achievement posits AdvXL as a pioneering approach, charting a new trajectory for the efficient training of robust visual representations at significantly larger scales. Our code is available at https://github.com/UCSC-VLAA/AdvXL.

Citation History

Jan 28, 2026
0
Feb 13, 2026
34+34
Feb 13, 2026
34