Text-to-Image Diffusion Models are Great Sketch-Photo Matchmakers

15
citations
#1499
in CVPR 2024
of 2716 papers
6
Top Authors
4
Data Points

Abstract

This paper, for the first time, explores text-to-image diffusion models for Zero-Shot Sketch-based Image Retrieval (ZS-SBIR). We highlight a pivotal discovery: the capacity of text-to-image diffusion models to seamlessly bridge the gap between sketches and photos. This proficiency is underpinned by their robust cross-modal capabilities and shape bias, findings that are substantiated through our pilot studies. In order to harness pre-trained diffusion models effectively, we introduce a straightforward yet powerful strategy focused on two key aspects: selecting optimal feature layers and utilising visual and textual prompts. For the former, we identify which layers are most enriched with information and are best suited for the specific retrieval requirements (category-level or fine-grained). Then we employ visual and textual prompts to guide the model's feature extraction process, enabling it to generate more discriminative and contextually relevant cross-modal representations. Extensive experiments on several benchmark datasets validate significant performance improvements.

Citation History

Jan 28, 2026
0
Feb 13, 2026
15+15
Feb 13, 2026
15
Feb 13, 2026
15