FedP3: Federated Personalized and Privacy-friendly Network Pruning under Model Heterogeneity

15citations
arXiv:2404.09816
15
citations
#1097
in ICLR 2024
of 2297 papers
4
Top Authors
4
Data Points

Abstract

The interest in federated learning has surged in recent research due to its unique ability to train a global model using privacy-secured information held locally on each client. This paper pays particular attention to the issue of client-side model heterogeneity, a pervasive challenge in the practical implementation of FL that escalates its complexity. Assuming a scenario where each client possesses varied memory storage, processing capabilities and network bandwidth - a phenomenon referred to as system heterogeneity - there is a pressing need to customize a unique model for each client. In response to this, we present an effective and adaptable federated framework FedP3, representing Federated Personalized and Privacy-friendly network Pruning, tailored for model heterogeneity scenarios. Our proposed methodology can incorporate and adapt well-established techniques to its specific instances. We offer a theoretical interpretation of FedP3 and its locally differential-private variant, DP-FedP3, and theoretically validate their efficiencies.

Citation History

Jan 28, 2026
0
Feb 13, 2026
15+15
Feb 13, 2026
15
Feb 13, 2026
15