Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis

46citations
arXiv:2310.10477
46
citations
#546
in ICLR 2024
of 2297 papers
12
Top Authors
4
Data Points

Abstract

The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges. This becomes particularly evident when LLMs inadvertently generate harmful or toxic content, either unintentionally or because of intentional inducement. Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs. Conversely, this study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them. In this case, mistakes are repurposed into valuable data for alignment, effectively helping to avoid the production of erroneous responses. Without external models or human annotations, our method leverages a model's intrinsic ability to discern undesirable mistakes and improves the safety of its generated responses. Experimental results reveal that our method outperforms existing alignment approaches in enhancing model safety while maintaining the overall utility.

Citation History

Jan 28, 2026
44
Feb 13, 2026
45+1
Feb 13, 2026
46+1
Feb 13, 2026
46