Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs

32citations
arXiv:2405.02774
32
citations
#701
in ICLR 2024
of 2297 papers
8
Top Authors
4
Data Points

Abstract

This work focuses on leveraging and selecting from vast, unlabeled, open data topre-fine-tunea pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced. While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.

Citation History

Jan 28, 2026
0
Feb 13, 2026
32+32
Feb 13, 2026
32
Feb 13, 2026
32