Magnushammer: A Transformer-Based Approach to Premise Selection

58citations
arXiv:2303.04488
58
citations
#476
in ICLR 2024
of 2297 papers
10
Top Authors
4
Data Points

Abstract

This paper presents a novel approach to premise selection, a crucial reasoning task in automated theorem proving. Traditionally, symbolic methods that rely on extensive domain knowledge and engineering effort are applied to this task. In contrast, this work demonstrates that contrastive training with the transformer architecture can achieve higher-quality retrieval of relevant premises, without the knowledge or feature engineering overhead. Our method, Magnushammer, outperforms the most advanced and widely used automation tool in interactive theorem proving called Sledgehammer. On the PISA and miniF2f benchmarks Magnushammer achieves $59.5\%$ (against $38.3\%$) and $34.0\%$ (against $20.9\%$) success rates, respectively. By combining Magnushammer with a language-model-based automated theorem prover, we further improve the state-of-the-art proof success rate from $57.0\%$ to $71.0\%$ on the PISA benchmark using $4$x fewer parameters. Moreover, we develop and open source a novel dataset for premise selection, containing textual representations of (proof state, relevant premise) pairs. To the best of our knowledge, this is the largest available premise selection dataset, and the first dataset of this kind for the Isabelle proof assistant.

Citation History

Jan 28, 2026
57
Feb 13, 2026
58+1
Feb 13, 2026
58
Feb 13, 2026
58