Visual-Instructed Degradation Diffusion for All-in-One Image Restoration

11citations
arXiv:2506.16960
11
citations
#749
in CVPR 2025
of 2873 papers
9
Top Authors
8
Data Points

Abstract

Image restoration tasks like deblurring, denoising, and dehazing usually need distinct models for each degradation type, restricting their generalization in real-world scenarios with mixed or unknown degradations. In this work, we propose \textbf{Defusion}, a novel all-in-one image restoration framework that utilizes visual instruction-guided degradation diffusion. Unlike existing methods that rely on task-specific models or ambiguous text-based priors, Defusion constructs explicit \textbf{visual instructions} that align with the visual degradation patterns. These instructions are grounded by applying degradations to standardized visual elements, capturing intrinsic degradation features while agnostic to image semantics. Defusion then uses these visual instructions to guide a diffusion-based model that operates directly in the degradation space, where it reconstructs high-quality images by denoising the degradation effects with enhanced stability and generalizability. Comprehensive experiments demonstrate that Defusion outperforms state-of-the-art methods across diverse image restoration tasks, including complex and real-world degradations.

Citation History

Jan 24, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
9+9
Feb 4, 2026
11+2
Feb 13, 2026
11
Feb 13, 2026
11
Feb 13, 2026
11