From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection

1
citations
#1918
in ICML 2025
of 3340 papers
2
Top Authors
4
Data Points

Abstract

Understanding the decision-making process of machine learning models provides valuable insights into the task, the data, and the reasons behind a model's failures. In this work, we propose a method that performs inherently interpretable predictions through the instance-wise sparsification of input images. To align the sparsification with human perception, we learn the masking in the space of semantically meaningful pixel regions rather than on pixel-level. Additionally, we introduce an explicit way to dynamically determine the required level of sparsity for each instance. We show empirically on semi-synthetic and natural image datasets that our inherently interpretable classifier produces more meaningful, human-understandable predictions than state-of-the-art benchmarks.

Citation History

Jan 28, 2026
1
Feb 13, 2026
1
Feb 13, 2026
1
Feb 13, 2026
1