PepTune: De Novo Generation of Therapeutic Peptides with Multi-Objective-Guided Discrete Diffusion

35
citations
#148
in ICML 2025
of 3340 papers
3
Top Authors
4
Data Points

Abstract

We presentPepTune, a multi-objective discrete diffusion model for simultaneous generation and optimization of therapeutic peptide SMILES. Built on the Masked Discrete Language Model (MDLM) framework, PepTune ensures valid peptide structures with a novel bond-dependent masking schedule and invalid loss function. To guide the diffusion process, we introduceMonte Carlo Tree Guidance (MCTG), an inference-time multi-objective guidance algorithm that balances exploration and exploitation to iteratively refine Pareto-optimal sequences. MCTG integrates classifier-based rewards with search-tree expansion, overcoming gradient estimation challenges and data sparsity. Using PepTune, we generate diverse, chemically-modified peptides simultaneously optimized for multiple therapeutic properties, including target binding affinity, membrane permeability, solubility, hemolysis, and non-fouling for various disease-relevant targets. In total, our results demonstrate that MCTG for masked discrete diffusion is a powerful and modular approach for multi-objective sequence design in discrete state spaces.

Citation History

Jan 27, 2026
32
Feb 13, 2026
35+3
Feb 13, 2026
35
Feb 13, 2026
35