Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation

17
citations
#708
in ICML 2024
of 2635 papers
6
Top Authors
4
Data Points

Abstract

With the increasingly powerful performances and enormous scales of pretrained models, promoting parameter efficiency in fine-tuning has become a crucial need for effective and efficient adaptation to various downstream tasks. One representative line of fine-tuning methods is Orthogonal Fine-tuning (OFT), which rigorously preserves the angular distances within the parameter space to preserve the pretrained knowledge. Despite the empirical effectiveness, OFT still suffers low parameter efficiency at $\mathcal{O}(d^2)$ and limited capability of downstream adaptation. Inspired by Givens rotation, in this paper, we proposed quasi-Givens Orthogonal Fine-Tuning (qGOFT) to address the problems. We first use $\mathcal{O}(d)$ Givens rotations to accomplish arbitrary orthogonal transformation in $SO(d)$ with provable equivalence, reducing parameter complexity from $\mathcal{O}(d^2)$ to $\mathcal{O}(d)$. Then we introduce flexible norm and relative angular adjustments under soft orthogonality regularization to enhance the adaptation capability of downstream semantic deviations. Extensive experiments on various tasks and pretrained models validate the effectiveness of our methods.

Citation History

Jan 28, 2026
0
Feb 13, 2026
17+17
Feb 13, 2026
17
Feb 13, 2026
17