24
citations
#549
in ICML 2024
of 2635 papers
6
Top Authors
4
Data Points
Topics
Abstract
We present Clifford-Steerable Convolutional Neural Networks (CS-CNNs), a novel class of ${\operatorname{E}}(p, q)$-equivariant CNNs. CS-CNNs process multivector fields on pseudo-Euclidean spaces $\mathbb{R}^{p,q}$. They specialize, for instance, to ${\operatorname{E}}(3)$-equivariance on $\mathbb{R}^3$ and Poincaré-equivariance on Minkowski spacetime $\mathbb{R}^{1,3}$. Our approach is based on an implicit parametrization of ${\operatorname{O}}(p,q)$-steerable kernels via Clifford group equivariant neural networks. We significantly and consistently outperform baseline methods on fluid dynamics as well as relativistic electrodynamics forecasting tasks.
Citation History
Jan 28, 2026
0
Feb 13, 2026
24+24
Feb 13, 2026
24
Feb 13, 2026
24