Revelio: Interpreting and leveraging semantic information in diffusion models

20
citations
#176
in ICCV 2025
of 2701 papers
3
Top Authors
7
Data Points

Abstract

We study $\textit{how}$ rich visual semantic information is represented within various layers and denoising timesteps of different diffusion architectures. We uncover monosemantic interpretable features by leveraging k-sparse autoencoders (k-SAE). We substantiate our mechanistic interpretations via transfer learning using light-weight classifiers on off-the-shelf diffusion models' features. On $4$ datasets, we demonstrate the effectiveness of diffusion features for representation learning. We provide an in-depth analysis of how different diffusion architectures, pre-training datasets, and language model conditioning impacts visual representation granularity, inductive biases, and transfer learning capabilities. Our work is a critical step towards deepening interpretability of black-box diffusion models. Code and visualizations available at: https://github.com/revelio-diffusion/revelio

Citation History

Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
20+20
Feb 13, 2026
20
Feb 13, 2026
20