Do It Yourself: Learning Semantic Correspondence from Pseudo-Labels

5
citations
#632
in ICCV 2025
of 2701 papers
5
Top Authors
7
Data Points

Abstract

Finding correspondences between semantically similar points across images and object instances is one of the everlasting challenges in computer vision. While large pre-trained vision models have recently been demonstrated as effective priors for semantic matching, they still suffer from ambiguities for symmetric objects or repeated object parts. We propose improving semantic correspondence estimation through 3D-aware pseudo-labeling. Specifically, we train an adapter to refine off-the-shelf features using pseudo-labels obtained via 3D-aware chaining, filtering wrong labels through relaxed cyclic consistency, and 3D spherical prototype mapping constraints. While reducing the need for dataset-specific annotations compared to prior work, we establish a new state-of-the-art on SPair-71k, achieving an absolute gain of over 4% and of over 7% compared to methods with similar supervision requirements. The generality of our proposed approach simplifies the extension of training to other data sources, which we demonstrate in our experiments.

Citation History

Jan 24, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
5+5
Feb 13, 2026
5
Feb 13, 2026
5