LUT-Fuse: Towards Extremely Fast Infrared and Visible Image Fusion via Distillation to Learnable Look-Up Tables

2
citations
#1094
in ICCV 2025
of 2701 papers
6
Top Authors
7
Data Points

Abstract

Current advanced research on infrared and visible image fusion primarily focuses on improving fusion performance, often neglecting the applicability on real-time fusion devices. In this paper, we propose a novel approach that towards extremely fast fusion via distillation to learnable lookup tables specifically designed for image fusion, termed as LUT-Fuse. Firstly, we develop a look-up table structure that utilizing low-order approximation encoding and high-level joint contextual scene encoding, which is well-suited for multi-modal fusion. Moreover, given the lack of ground truth in multi-modal image fusion, we naturally proposed the efficient LUT distillation strategy instead of traditional quantization LUT methods. By integrating the performance of the multi-modal fusion network (MM-Net) into the MM-LUT model, our method achieves significant breakthroughs in efficiency and performance. It typically requires less than one-tenth of the time compared to the current lightweight SOTA fusion algorithms, ensuring high operational speed across various scenarios, even in low-power mobile devices. Extensive experiments validate the superiority, reliability, and stability of our fusion approach. The code is available at https://github.com/zyb5/LUT-Fuse.

Citation History

Jan 24, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
2+2
Feb 13, 2026
2
Feb 13, 2026
2