Stochastic Gradient Estimation for Higher-Order Differentiable Rendering
0
citations
#1781
in ICCV 2025
of 2701 papers
3
Top Authors
7
Data Points
Top Authors
Abstract
We derive methods to compute higher order differentials (Hessians and Hessian-vector products) of the rendering operator. Our approach is based on importance sampling of a convolution that represents the differentials of rendering parameters and shows to be applicable to both rasterization and path tracing. We further suggest an aggregate sampling strategy to importance-sample multiple dimensions of one convolution kernel simultaneously. We demonstrate that this information improves convergence when used in higher-order optimizers such as Newton or Conjugate Gradient relative to a gradient descent baseline in several inverse rendering tasks.
Citation History
Jan 25, 2026
0
Jan 26, 2026
0
Jan 26, 2026
0
Jan 28, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0