Disentangling Instance and Scene Contexts for 3D Semantic Scene Completion

2
citations
#1094
in ICCV 2025
of 2701 papers
4
Top Authors
7
Data Points

Abstract

3D Semantic Scene Completion (SSC) has gained increasing attention due to its pivotal role in 3D perception. Recent advancements have primarily focused on refining voxel-level features to construct 3D scenes. However, treating voxels as the basic interaction units inherently limits the utilization of class-level information, which is proven critical for enhancing the granularity of completion results. To address this, we propose \textbf{D}isentangling Instance and Scene Contexts (DISC), a novel dual-stream paradigm that enhances learning for both instance and scene categories through separated optimization. Specifically, we replace voxel queries with discriminative class queries, which incorporate class-specific geometric and semantic priors. Additionally, we exploit the intrinsic properties of classes to design specialized decoding modules, facilitating targeted interactions and efficient class-level information flow. Experimental results demonstrate that DISC achieves state-of-the-art (SOTA) performance on both SemanticKITTI and SSCBench-KITTI-360 benchmarks, with mIoU scores of 17.35 and 20.55, respectively. Remarkably, DISC even outperforms multi-frame SOTA methods using only single-frame input and significantly improves instance category performance, surpassing both single-frame and multi-frame SOTA instance mIoU by 17.9\% and 11.9\%, respectively, on the SemanticKITTI hidden test. The code is available at https://github.com/Enyu-Liu/DISC.

Citation History

Jan 26, 2026
2
Jan 26, 2026
2
Jan 27, 2026
2
Feb 3, 2026
2
Feb 13, 2026
2
Feb 13, 2026
2
Feb 13, 2026
2