Graph Neural Network Causal Explanation via Neural Causal Models

10
citations
#1066
in ECCV 2024
of 2387 papers
2
Top Authors
6
Data Points

Abstract

Graph neural network (GNN) explainers identify the important subgraph that ensures the prediction for a given graph. Until now, almost all GNN explainers are based on association, which is prone to spurious correlations. We propose {\name}, a GNN causal explainer via causal inference. Our explainer is based on the observation that a graph often consists of a causal underlying subgraph. {\name} includes three main steps: 1) It builds causal structure and the corresponding structural causal model (SCM) for a graph, which enables the cause-effect calculation among nodes. 2) Directly calculating the cause-effect in real-world graphs is computationally challenging. It is then enlightened by the recent neural causal model (NCM), a special type of SCM that is trainable, and design customized NCMs for GNNs. By training these GNN NCMs, the cause-effect can be easily calculated. 3) It uncovers the subgraph that causally explains the GNN predictions via the optimized GNN-NCMs. Evaluation results on multiple synthetic and real-world graphs validate that {\name} significantly outperforms existing GNN explainers in exact groundtruth explanation identification

Citation History

Jan 25, 2026
10
Jan 27, 2026
10
Jan 31, 2026
10
Feb 13, 2026
10
Feb 13, 2026
10
Feb 13, 2026
10