MUVR: A Multi-Modal Untrimmed Video Retrieval Benchmark with Multi-Level Visual Correspondence

1
citations
#2497
in NEURIPS 2025
of 5858 papers
14
Top Authors
7
Data Points

Abstract

We propose the Multi-modal Untrimmed Video Retrieval task, along with a new benchmark (MUVR) to advance video retrieval for long-video platforms. MUVR aims to retrieve untrimmed videos containing relevant segments using multi-modal queries. It has the following features:1) Practical retrieval paradigm:MUVR supports video-centric multi-modal queries, expressing fine-grained retrieval needs through long text descriptions, video tag prompts, and mask prompts. It adopts a one-to-many retrieval paradigm and focuses on untrimmed videos, tailored for long-video platform applications.2) Multi-level visual correspondence:To cover common video categories (e.g., news, travel, dance) and precisely define retrieval matching criteria, we construct multi-level visual correspondence based on core video content (e.g., news events, travel locations, dance moves) which users are interested in and want to retrieve. It covers six levels: copy, event, scene, instance, action, and others.3) Comprehensive evaluation criteria:We develop 3 versions of MUVR (i.e., Base, Filter, QA). MUVR-Base/Filter evaluates retrieval models, while MUVR-QA assesses MLLMs in a question-answering format. We also propose a Reranking Score to evaluate the reranking ability of MLLMs. MUVR consists of 53K untrimmed videos from the video platform Bilibili, with 1,050 multi-modal queries and 84K matches. Extensive evaluations of 3 state-of-the-art video retrieval models, 6 image-based VLMs, and 10 MLLMs are conducted. MUVR reveals the limitations of retrieval methods in processing untrimmed videos and multi-modal queries, as well as MLLMs in multi-video understanding and reranking. Our code and benchmark is available at https://github.com/debby-0527/MUVR.

Citation History

Jan 25, 2026
0
Jan 27, 2026
0
Jan 27, 2026
0
Jan 28, 2026
0
Feb 13, 2026
1+1
Feb 13, 2026
1
Feb 13, 2026
1