Conformal Prediction for Time-series Forecasting with Change Points

0
citations
#3347
in NEURIPS 2025
of 5858 papers
2
Top Authors
7
Data Points

Abstract

Conformal prediction has been explored as a general and efficient way to provide uncertainty quantification for time series. However, current methods struggle to handle time series data with change points - sudden shifts in the underlying data-generating process. In this paper, we propose a novel Conformal Prediction for Time-series with Change points (CPTC) algorithm, addressing this gap by integrating a model to predict the underlying state with online conformal prediction to model uncertainties in non-stationary time series. We prove CPTC's validity and improved adaptivity in the time series setting under minimum assumptions, and demonstrate CPTC's practical effectiveness on 6 synthetic and real-world datasets, showing improved validity and adaptivity compared to state-of-the-art baselines.

Citation History

Jan 26, 2026
0
Jan 26, 2026
0
Jan 27, 2026
0
Feb 3, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0
Feb 13, 2026
0