"differential privacy" Papers

96 papers found • Page 2 of 2

Beyond the Calibration Point: Mechanism Comparison in Differential Privacy

Georgios Kaissis, Stefan Kolek, Borja de Balle Pigem et al.

ICML 2024arXiv:2406.08918
10
citations

CaPS: Collaborative and Private Synthetic Data Generation from Distributed Sources

Sikha Pentyala, Mayana Pereira, Martine De Cock

ICML 2024arXiv:2402.08614
5
citations

CuTS: Customizable Tabular Synthetic Data Generation

Mark Vero, Mislav Balunovic, Martin Vechev

ICML 2024arXiv:2307.03577
10
citations

Delving into Differentially Private Transformer

Youlong Ding, Xueyang Wu, Yining meng et al.

ICML 2024arXiv:2405.18194
11
citations

Differentially Private Bias-Term Fine-tuning of Foundation Models

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha et al.

ICML 2024arXiv:2210.00036
55
citations

Differentially Private Decentralized Learning with Random Walks

Edwige Cyffers, Aurélien Bellet, Jalaj Upadhyay

ICML 2024arXiv:2402.07471
9
citations

Differentially Private Domain Adaptation with Theoretical Guarantees

Raef Bassily, Corinna Cortes, Anqi Mao et al.

ICML 2024arXiv:2306.08838

Differentially private exact recovery for stochastic block models

Dung Nguyen, Anil Vullikanti

ICML 2024arXiv:2406.02644
5
citations

Differentially Private Post-Processing for Fair Regression

Ruicheng Xian, Qiaobo Li, Gautam Kamath et al.

ICML 2024arXiv:2405.04034
9
citations

Differentially Private Representation Learning via Image Captioning

Tom Sander, Yaodong Yu, Maziar Sanjabi et al.

ICML 2024arXiv:2403.02506
7
citations

Differentially Private Sum-Product Networks

Xenia Heilmann, Mattia Cerrato, Ernst Althaus

ICML 2024

Differentially Private Synthetic Data via Foundation Model APIs 2: Text

Chulin Xie, Zinan Lin, Arturs Backurs et al.

ICML 2024spotlightarXiv:2403.01749
63
citations

Differentially Private Worst-group Risk Minimization

Xinyu Zhou, Raef Bassily

ICML 2024arXiv:2402.19437
6
citations

DP-AdamBC: Your DP-Adam Is Actually DP-SGD (Unless You Apply Bias Correction)

Qiaoyue Tang, Frederick Shpilevskiy, Mathias Lécuyer

AAAI 2024paperarXiv:2312.14334
30
citations

FedSC: Provable Federated Self-supervised Learning with Spectral Contrastive Objective over Non-i.i.d. Data

Shusen Jing, Anlan Yu, Shuai Zhang et al.

ICML 2024arXiv:2405.03949
3
citations

How Private are DP-SGD Implementations?

Lynn Chua, Badih Ghazi, Pritish Kamath et al.

ICML 2024arXiv:2403.17673
22
citations

Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy

Wei-Ning Chen, Berivan Isik, Peter Kairouz et al.

ICML 2024arXiv:2405.02341
4
citations

Individualized Privacy Accounting via Subsampling with Applications in Combinatorial Optimization

Badih Ghazi, Pritish Kamath, Ravi Kumar et al.

ICML 2024arXiv:2405.18534
1
citations

Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation

Bochao Liu, Pengju Wang, Shiming Ge

ECCV 2024arXiv:2408.14738
4
citations

Locally Differentially Private Decentralized Stochastic Bilevel Optimization with Guaranteed Convergence Accuracy

Ziqin Chen, Yongqiang Wang

ICML 2024

Making Old Things New: A Unified Algorithm for Differentially Private Clustering

Max Dupre la Tour, Monika Henzinger, David Saulpic

ICML 2024arXiv:2406.11649
4
citations

Mean Estimation in the Add-Remove Model of Differential Privacy

Alex Kulesza, Ananda Suresh, Yuyan Wang

ICML 2024arXiv:2312.06658
10
citations

Nash Incentive-compatible Online Mechanism Learning via Weakly Differentially Private Online Learning

Joon Suk Huh, Kirthevasan Kandasamy

ICML 2024arXiv:2407.04898
2
citations

Neural Collapse meets Differential Privacy: Curious behaviors of NoisyGD with Near-Perfect Representation Learning

Chendi Wang, Yuqing Zhu, Weijie Su et al.

ICML 2024arXiv:2405.08920
8
citations

Noise-Aware Algorithm for Heterogeneous Differentially Private Federated Learning

Saber Malekmohammadi, Yaoliang Yu, YANG CAO

ICML 2024arXiv:2406.03519
8
citations

No Prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation

Nimesh Agrawal, Anuj Sirohi, Sandeep Kumar et al.

AAAI 2024paperarXiv:2312.10080
39
citations

Optimal Differentially Private Model Training with Public Data

Andrew Lowy, Zeman Li, Tianjian Huang et al.

ICML 2024arXiv:2306.15056
7
citations

Perturb-and-Project: Differentially Private Similarities and Marginals

Vincent Cohen-Addad, Tommaso d'Orsi, Alessandro Epasto et al.

ICML 2024spotlightarXiv:2406.04868
1
citations

Poincaré Differential Privacy for Hierarchy-Aware Graph Embedding

Yuecen Wei, Haonan Yuan, Xingcheng Fu et al.

AAAI 2024paperarXiv:2312.12183
11
citations

Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining

Florian Tramer, Gautam Kamath, Nicholas Carlini

ICML 2024

Privacy Amplification by Iteration for ADMM with (Strongly) Convex Objective Functions

T-H. Hubert Chan, Hao Xie, Mengshi ZHAO

AAAI 2024paperarXiv:2312.08685
1
citations

Privacy-Preserving Instructions for Aligning Large Language Models

Da Yu, Peter Kairouz, Sewoong Oh et al.

ICML 2024arXiv:2402.13659
36
citations

Private and Federated Stochastic Convex Optimization: Efficient Strategies for Centralized Systems

Roie Reshef, Kfir Levy

ICML 2024arXiv:2407.12396
1
citations

Private Heterogeneous Federated Learning Without a Trusted Server Revisited: Error-Optimal and Communication-Efficient Algorithms for Convex Losses

Changyu Gao, Andrew Lowy, Xingyu Zhou et al.

ICML 2024arXiv:2407.09690
10
citations

Privately Learning Smooth Distributions on the Hypercube by Projections

Clément Lalanne, Sébastien Gadat

ICML 2024arXiv:2409.10083
1
citations

Private Vector Mean Estimation in the Shuffle Model: Optimal Rates Require Many Messages

Hilal Asi, Vitaly Feldman, Jelani Nelson et al.

ICML 2024arXiv:2404.10201
5
citations

Proactive DP: A Multiple Target Optimization Framework for DP-SGD

Marten van Dijk, Nhuong Nguyen, Toan N. Nguyen et al.

ICML 2024

Profile Reconstruction from Private Sketches

Hao WU, Rasmus Pagh

ICML 2024arXiv:2406.01158

Provable Privacy with Non-Private Pre-Processing

Yaxi Hu, Amartya Sanyal, Bernhard Schölkopf

ICML 2024arXiv:2403.13041
4
citations

Reducing Item Discrepancy via Differentially Private Robust Embedding Alignment for Privacy-Preserving Cross Domain Recommendation

Weiming Liu, Xiaolin Zheng, Chaochao Chen et al.

ICML 2024

Replicable Learning of Large-Margin Halfspaces

Alkis Kalavasis, Amin Karbasi, Kasper Green Larsen et al.

ICML 2024spotlightarXiv:2402.13857
12
citations

Rethinking DP-SGD in Discrete Domain: Exploring Logistic Distribution in the Realm of signSGD

Jonggyu Jang, Seongjin Hwang, Hyun Jong Yang

ICML 2024

Shifted Interpolation for Differential Privacy

Jinho Bok, Weijie Su, Jason Altschuler

ICML 2024arXiv:2403.00278
11
citations

The Privacy Power of Correlated Noise in Decentralized Learning

Youssef Allouah, Anastasiia Koloskova, Aymane Firdoussi et al.

ICML 2024arXiv:2405.01031
18
citations

Unveiling Privacy, Memorization, and Input Curvature Links

Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi et al.

ICML 2024arXiv:2402.18726
13
citations

ViP: A Differentially Private Foundation Model for Computer Vision

Yaodong Yu, Maziar Sanjabi, Yi Ma et al.

ICML 2024arXiv:2306.08842
18
citations