"federated learning" Papers

178 papers found • Page 2 of 4

FedWSQ: Efficient Federated Learning with Weight Standardization and Distribution-Aware Non-Uniform Quantization

Seung-Wook Kim, Seongyeol Kim, Jiah Kim et al.

ICCV 2025arXiv:2506.23516

Flick: Empowering Federated Learning with Commonsense Knowledge

Ran Zhu, Mingkun Yang, Shiqiang Wang et al.

NEURIPS 2025

FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models

Yan Gao, Massimo R. Scamarcia, Javier Fernandez-Marques et al.

NEURIPS 2025arXiv:2506.02961
4
citations

Gains: Fine-grained Federated Domain Adaptation in Open Set

Zhengyi Zhong, Wenzheng Jiang, Weidong Bao et al.

NEURIPS 2025arXiv:2510.15967

Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning

Yanbiao Ma, Wei Dai, Wenke Huang et al.

CVPR 2025arXiv:2503.06457
7
citations

Hot-pluggable Federated Learning: Bridging General and Personalized FL via Dynamic Selection

Lei Shen, Zhenheng Tang, Lijun Wu et al.

ICLR 2025
4
citations

Infighting in the Dark: Multi-Label Backdoor Attack in Federated Learning

Ye Li, Yanchao Zhao, chengcheng zhu et al.

CVPR 2025arXiv:2409.19601
2
citations

Layer-wise Update Aggregation with Recycling for Communication-Efficient Federated Learning

Jisoo Kim, Sungmin Kang, Sunwoo Lee

NEURIPS 2025arXiv:2503.11146
1
citations

Learn How to Query from Unlabeled Data Streams in Federated Learning

Yuchang Sun, Xinran Li, Tao Lin et al.

AAAI 2025paperarXiv:2412.08138
1
citations

Learning to Specialize: Joint Gating-Expert Training for Adaptive MoEs in Decentralized Settings

Yehya Farhat, Hamza ElMokhtar Shili, Fangshuo Liao et al.

NEURIPS 2025arXiv:2306.08586
3
citations

LiD-FL: Towards List-Decodable Federated Learning

Hong Liu, Liren Shan, Han Bao et al.

AAAI 2025paperarXiv:2408.04963

LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement

Jieming Bian, Lei Wang, Letian Zhang et al.

ICCV 2025arXiv:2411.14961
18
citations

Many-Objective Multi-Solution Transport

Ziyue Li, Tian Li, Virginia Smith et al.

ICLR 2025arXiv:2403.04099
6
citations

MARS: A Malignity-Aware Backdoor Defense in Federated Learning

Wei Wan, Ning Yuxuan, Zhicong Huang et al.

NEURIPS 2025arXiv:2509.20383
4
citations

Multifaceted User Modeling in Recommendation: A Federated Foundation Models Approach

Chunxu Zhang, Guodong Long, Hongkuan Guo et al.

AAAI 2025paperarXiv:2412.16969
6
citations

Multiplayer Federated Learning: Reaching Equilibrium with Less Communication

TaeHo Yoon, Sayantan Choudhury, Nicolas Loizou

NEURIPS 2025arXiv:2501.08263
5
citations

NoT: Federated Unlearning via Weight Negation

Yasser Khalil, Leo Maxime Brunswic, Soufiane Lamghari et al.

CVPR 2025arXiv:2503.05657
12
citations

On the Robustness of Distributed Machine Learning Against Transfer Attacks

Sebastien Andreina, Pascal Zimmer, Ghassan Karame

AAAI 2025paperarXiv:2412.14080
1
citations

OpenFLAME: Federated Visual Positioning System to Enable Large-Scale Augmented Reality Applications

Sagar Bharadwaj Kalasibail Seetharam, Harrison Williams, Ainiu Luke Wang et al.

ISMAR 2025paperarXiv:2510.03915
1
citations

Optimization with Access to Auxiliary Information

EL MAHDI CHAYTI, Sai Karimireddy

ICLR 2025arXiv:2206.00395
14
citations

Patient-Level Anatomy Meets Scanning-Level Physics: Personalized Federated Low-Dose CT Denoising Empowered by Large Language Model

Ziyuan Yang, Yingyu Chen, Zhiwen Wang et al.

CVPR 2025arXiv:2503.00908
17
citations

Personalized Federated Learning for Spatio-Temporal Forecasting: A Dual Semantic Alignment-Based Contrastive Approach

Qingxiang Liu, Sheng Sun, Yuxuan Liang et al.

AAAI 2025paperarXiv:2404.03702
16
citations

PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models

Kyeongkook Seo, Dong-Jun Han, Jaejun Yoo

ICLR 2025arXiv:2503.08085
3
citations

Problem-Parameter-Free Federated Learning

Wenjing Yan, Kai Zhang, Xiaolu Wang et al.

ICLR 2025

Query-based Knowledge Transfer for Heterogeneous Learning Environments

Norah Alballa, Wenxuan Zhang, Ziquan Liu et al.

ICLR 2025arXiv:2504.09205
2
citations

Ravan: Multi-Head Low-Rank Adaptation for Federated Fine-Tuning

Arian Raje, Baris Askin, Divyansh Jhunjhunwala et al.

NEURIPS 2025arXiv:2506.05568
3
citations

Rethinking Fair Federated Learning from Parameter and Client View

Kaiqi Guan, Wenke Huang, Xianda Guo et al.

NEURIPS 2025

Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA

Shuangyi Chen, Yuanxin Guo, Yue Ju et al.

NEURIPS 2025arXiv:2502.01755
7
citations

Sketched Gaussian Mechanism for Private Federated Learning

Qiaobo Li, Zhijie Chen, Arindam Banerjee

NEURIPS 2025spotlightarXiv:2509.08195
1
citations

Soft-consensual Federated Learning for Data Heterogeneity via Multiple Paths

Sheng Huang, Lele Fu, Fanghua Ye et al.

NEURIPS 2025

SparsyFed: Sparse Adaptive Federated Learning

Adriano Guastella, Lorenzo Sani, Alex Iacob et al.

ICLR 2025
2
citations

SPFL: Sequential updates with Parallel aggregation for Enhanced Federated Learning under Category and Domain Shifts

Haoyuan Liang, Shilei Cao, Li et al.

NEURIPS 2025

Streaming Federated Learning with Markovian Data

Khiem HUYNH, Malcolm Egan, Giovanni Neglia et al.

NEURIPS 2025arXiv:2503.18807

Tackling Feature-Classifier Mismatch in Federated Learning via Prompt-Driven Feature Transformation

Xinghao Wu, Xuefeng Liu, Jianwei Niu et al.

NEURIPS 2025arXiv:2407.16139
2
citations

Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness

Haoming Wang, Wei Gao

AAAI 2025paperarXiv:2309.13536
2
citations

The Gaussian Mixing Mechanism: Renyi Differential Privacy via Gaussian Sketches

Omri Lev, Vishwak Srinivasan, Moshe Shenfeld et al.

NEURIPS 2025arXiv:2505.24603
2
citations

Tight Bounds for Maximum Weight Matroid Independent Set and Matching in the Zero Communication Model

Ilan Doron-Arad

NEURIPS 2025

Towards Federated RLHF with Aggregated Client Preference for LLMs

Feijie Wu, Xiaoze Liu, Haoyu Wang et al.

ICLR 2025arXiv:2407.03038
10
citations

TRAIL: Trust-Aware Client Scheduling for Semi-Decentralized Federated Learning

Gangqiang Hu, Jianfeng Lu, Jianmin Han et al.

AAAI 2025paperarXiv:2412.11448

You Are Your Own Best Teacher: Achieving Centralized-level Performance in Federated Learning under Heterogeneous and Long-tailed Data

Shanshan Yan, Zexi Li, Chao Wu et al.

ICCV 2025arXiv:2503.06916
2
citations

You Only Communicate Once: One-shot Federated Low-Rank Adaptation of MLLM

Binqian Xu, Haiyang Mei, Zechen Bai et al.

NEURIPS 2025

Accelerating Federated Learning with Quick Distributed Mean Estimation

Ran Ben Basat, Shay Vargaftik, Amit Portnoy et al.

ICML 2024

Accelerating Heterogeneous Federated Learning with Closed-form Classifiers

Eros Fanì, Raffaello Camoriano, Barbara Caputo et al.

ICML 2024arXiv:2406.01116
8
citations

Achieving Lossless Gradient Sparsification via Mapping to Alternative Space in Federated Learning

Do-Yeon Kim, Dong-Jun Han, Jun Seo et al.

ICML 2024

Adaptive Group Personalization for Federated Mutual Transfer Learning

Haoqing Xu, Dian Shen, Meng Wang et al.

ICML 2024

A Doubly Recursive Stochastic Compositional Gradient Descent Method for Federated Multi-Level Compositional Optimization

Hongchang Gao

ICML 2024

AegisFL: Efficient and Flexible Privacy-Preserving Byzantine-Robust Cross-silo Federated Learning

Dong Chen, Hongyuan Qu, Guangwu Xu

ICML 2024

A Federated Stochastic Multi-level Compositional Minimax Algorithm for Deep AUC Maximization

Xinwen Zhang, Ali Payani, Myungjin Lee et al.

ICML 2024

A New Theoretical Perspective on Data Heterogeneity in Federated Optimization

Jiayi Wang, Shiqiang Wang, Rong-Rong Chen et al.

ICML 2024arXiv:2407.15567
3
citations

Balancing Similarity and Complementarity for Federated Learning

Kunda Yan, Sen Cui, Abudukelimu Wuerkaixi et al.

ICML 2024arXiv:2405.09892
12
citations