Poster "foundation models" Papers

100 papers found • Page 2 of 2

TAViS: Text-bridged Audio-Visual Segmentation with Foundation Models

Ziyang Luo, Nian Liu, Xuguang Yang et al.

ICCV 2025arXiv:2506.11436
3
citations

The Indra Representation Hypothesis

Jianglin Lu, Hailing Wang, Kuo Yang et al.

NEURIPS 2025

This Time is Different: An Observability Perspective on Time Series Foundation Models

Ben Cohen, Emaad Khwaja, Youssef Doubli et al.

NEURIPS 2025arXiv:2505.14766
13
citations

Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts

Xiaoming Shi, Shiyu Wang, Yuqi Nie et al.

ICLR 2025arXiv:2409.16040
194
citations

ToolVQA: A Dataset for Multi-step Reasoning VQA with External Tools

Shaofeng Yin, Ting Lei, Yang Liu

ICCV 2025arXiv:2508.03284
4
citations

TS-RAG: Retrieval-Augmented Generation based Time Series Foundation Models are Stronger Zero-Shot Forecaster

Kanghui Ning, Zijie Pan, Yu Liu et al.

NEURIPS 2025arXiv:2503.07649
15
citations

UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection

Zhaopeng Gu, Bingke Zhu, Guibo Zhu et al.

CVPR 2025arXiv:2412.03342
23
citations

UniWav: Towards Unified Pre-training for Speech Representation Learning and Generation

Alexander Liu, Sang-gil Lee, Chao-Han Huck Yang et al.

ICLR 2025arXiv:2503.00733
4
citations

vesselFM: A Foundation Model for Universal 3D Blood Vessel Segmentation

Bastian Wittmann, Yannick Wattenberg, Tamaz Amiranashvili et al.

CVPR 2025arXiv:2411.17386
9
citations

ZeroPatcher: Training-free Sampler for Video Inpainting and Editing

Shaoshu Yang, Yingya Zhang, Ran He

NEURIPS 2025

Zero-shot forecasting of chaotic systems

Yuanzhao Zhang, William Gilpin

ICLR 2025arXiv:2409.15771
19
citations

3x2: 3D Object Part Segmentation by 2D Semantic Correspondences

Anh Thai, Weiyao Wang, Hao Tang et al.

ECCV 2024arXiv:2407.09648
12
citations

Active Label Correction for Semantic Segmentation with Foundation Models

Hoyoung Kim, SEHYUN HWANG, Suha Kwak et al.

ICML 2024arXiv:2403.10820
5
citations

Adversarially Robust Hypothesis Transfer Learning

Yunjuan Wang, Raman Arora

ICML 2024

Any2Point: Empowering Any-modality Transformers for Efficient 3D Understanding

YIWEN TANG, Renrui Zhang, Jiaming Liu et al.

ECCV 2024
19
citations

Asymmetry in Low-Rank Adapters of Foundation Models

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi et al.

ICML 2024arXiv:2402.16842
68
citations

Caduceus: Bi-Directional Equivariant Long-Range DNA Sequence Modeling

Yair Schiff, Chia Hsiang Kao, Aaron Gokaslan et al.

ICML 2024arXiv:2403.03234
170
citations

Collaborating Foundation Models for Domain Generalized Semantic Segmentation

Yasser Benigmim, Subhankar Roy, Slim Essid et al.

CVPR 2024arXiv:2312.09788
35
citations

Compute Better Spent: Replacing Dense Layers with Structured Matrices

Shikai Qiu, Andres Potapczynski, Marc Finzi et al.

ICML 2024arXiv:2406.06248
23
citations

Constructing Concept-based Models to Mitigate Spurious Correlations with Minimal Human Effort

Jeeyung Kim, Ze Wang, Qiang Qiu

ECCV 2024arXiv:2407.08947
6
citations

Differentially Private Bias-Term Fine-tuning of Foundation Models

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha et al.

ICML 2024arXiv:2210.00036
55
citations

Diffusion Models for Open-Vocabulary Segmentation

Laurynas Karazija, Iro Laina, Andrea Vedaldi et al.

ECCV 2024arXiv:2306.09316
60
citations

Discovering Bias in Latent Space: An Unsupervised Debiasing Approach

Dyah Adila, Shuai Zhang, Boran Han et al.

ICML 2024arXiv:2406.03631
14
citations

Enhancing Recipe Retrieval with Foundation Models: A Data Augmentation Perspective

Fangzhou Song, Bin Zhu, Yanbin Hao et al.

ECCV 2024arXiv:2312.04763
10
citations

Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

Kai Gan, Tong Wei

ICML 2024arXiv:2405.11756
22
citations

FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the Power of Heterogeneous Clients

Shangchao Su, Bin Li, Xiangyang Xue

ECCV 2024arXiv:2311.11227
21
citations

GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence

Pengyuan Wang, Takuya Ikeda, Robert Lee et al.

ECCV 2024arXiv:2311.13777
9
citations

Let Go of Your Labels with Unsupervised Transfer

Artyom Gadetsky, Yulun Jiang, Maria Brbic

ICML 2024arXiv:2406.07236
14
citations

LEVI: Generalizable Fine-tuning via Layer-wise Ensemble of Different Views

Yuji Roh, Qingyun Liu, Huan Gui et al.

ICML 2024arXiv:2402.04644
5
citations

Long-Tail Learning with Foundation Model: Heavy Fine-Tuning Hurts

Jiang-Xin Shi, Tong Wei, Zhi Zhou et al.

ICML 2024arXiv:2309.10019
66
citations

MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions

Kai Zhang, Yi Luan, Hexiang Hu et al.

ICML 2024arXiv:2403.19651
88
citations

MarineInst: A Foundation Model for Marine Image Analysis with Instance Visual Description

Ziqiang Zheng, Yiwei Chen, Huimin Zeng et al.

ECCV 2024

MESA: Matching Everything by Segmenting Anything

Yesheng Zhang, Xu Zhao

CVPR 2024arXiv:2401.16741
19
citations

Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks

MohammadReza Davari, Eugene Belilovsky

ECCV 2024arXiv:2312.06795
106
citations

MOMENT: A Family of Open Time-series Foundation Models

Mononito Goswami, Konrad Szafer, Arjun Choudhry et al.

ICML 2024arXiv:2402.03885
354
citations

One-Prompt to Segment All Medical Images

Wu, Min Xu

CVPR 2024arXiv:2305.10300
47
citations

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla et al.

ICML 2024arXiv:2402.00809
60
citations

Position: Cracking the Code of Cascading Disparity Towards Marginalized Communities

Golnoosh Farnadi, Mohammad Havaei, Negar Rostamzadeh

ICML 2024arXiv:2406.01757
3
citations

Position: On the Societal Impact of Open Foundation Models

Sayash Kapoor, Rishi Bommasani, Kevin Klyman et al.

ICML 2024

Position: Open-Endedness is Essential for Artificial Superhuman Intelligence

Edward Hughes, Michael Dennis, Jack Parker-Holder et al.

ICML 2024

Position: Towards Unified Alignment Between Agents, Humans, and Environment

Zonghan Yang, an liu, Zijun Liu et al.

ICML 2024

Prompting is a Double-Edged Sword: Improving Worst-Group Robustness of Foundation Models

Amrith Setlur, Saurabh Garg, Virginia Smith et al.

ICML 2024

Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective

Yang Chen, Cong Fang, Zhouchen Lin et al.

ICML 2024arXiv:2406.11249
2
citations

RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Yufei Wang, Zhou Xian, Feng Chen et al.

ICML 2024arXiv:2311.01455
188
citations

Robustness Tokens: Towards Adversarial Robustness of Transformers

Brian Pulfer, Yury Belousov, Slava Voloshynovskiy

ECCV 2024arXiv:2503.10191

Towards Causal Foundation Model: on Duality between Optimal Balancing and Attention

Jiaqi Zhang, Joel Jennings, Agrin Hilmkil et al.

ICML 2024

Training Like a Medical Resident: Context-Prior Learning Toward Universal Medical Image Segmentation

Yunhe Gao

CVPR 2024arXiv:2306.02416
31
citations

Transferring Knowledge From Large Foundation Models to Small Downstream Models

Shikai Qiu, Boran Han, Danielle Robinson et al.

ICML 2024arXiv:2406.07337
8
citations

UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning

Shikun Feng, Yuyan Ni, Li et al.

ICML 2024arXiv:2405.10343
18
citations

ViP: A Differentially Private Foundation Model for Computer Vision

Yaodong Yu, Maziar Sanjabi, Yi Ma et al.

ICML 2024arXiv:2306.08842
18
citations