"catastrophic forgetting" Papers

127 papers found • Page 3 of 3

Locality Sensitive Sparse Encoding for Learning World Models Online

Zichen Liu, Chao Du, Wee Sun Lee et al.

ICLR 2024arXiv:2401.13034
18
citations

MAGR: Manifold-Aligned Graph Regularization for Continual Action Quality Assessment

Kanglei Zhou, Liyuan Wang, Xingxing Zhang et al.

ECCV 2024arXiv:2403.04398
11
citations

Mitigating Catastrophic Forgetting in Online Continual Learning by Modeling Previous Task Interrelations via Pareto Optimization

Yichen WU, Hong Wang, Peilin Zhao et al.

ICML 2024

Model Tailor: Mitigating Catastrophic Forgetting in Multi-modal Large Language Models

Didi Zhu, Zhongyi Sun, Zexi Li et al.

ICML 2024arXiv:2402.12048
48
citations

Multi-layer Rehearsal Feature Augmentation for Class-Incremental Learning

Bowen Zheng, Da-Wei Zhou, Han-Jia Ye et al.

ICML 2024

Neighboring Perturbations of Knowledge Editing on Large Language Models

Jun-Yu Ma, Zhen-Hua Ling, Ningyu Zhang et al.

ICML 2024arXiv:2401.17623
6
citations

Non-Exemplar Domain Incremental Learning via Cross-Domain Concept Integration

Qiang Wang, Yuhang He, Songlin Dong et al.

ECCV 2024
14
citations

Non-exemplar Online Class-Incremental Continual Learning via Dual-Prototype Self-Augment and Refinement

Fushuo Huo, Wenchao Xu, Jingcai Guo et al.

AAAI 2024paperarXiv:2303.10891
23
citations

On the Diminishing Returns of Width for Continual Learning

Etash Guha, Vihan Lakshman

ICML 2024arXiv:2403.06398
9
citations

PromptCCD: Learning Gaussian Mixture Prompt Pool for Continual Category Discovery

Fernando Julio Cendra, Bingchen Zhao, Kai Han

ECCV 2024arXiv:2407.19001
19
citations

PromptFusion: Decoupling Stability and Plasticity for Continual Learning

Haoran Chen, Zuxuan Wu, Xintong Han et al.

ECCV 2024arXiv:2303.07223
22
citations

Quantized Prompt for Efficient Generalization of Vision-Language Models

Tianxiang Hao, Xiaohan Ding, Juexiao Feng et al.

ECCV 2024arXiv:2407.10704
9
citations

Rapid Learning without Catastrophic Forgetting in the Morris Water Maze

Raymond L Wang, Jaedong Hwang, Akhilan Boopathy et al.

ICML 2024

Reshaping the Online Data Buffering and Organizing Mechanism for Continual Test-Time Adaptation

Zhilin Zhu, Xiaopeng Hong, Zhiheng Ma et al.

ECCV 2024arXiv:2407.09367
8
citations

SDDGR: Stable Diffusion-based Deep Generative Replay for Class Incremental Object Detection

JUNSU KIM, Hoseong Cho, Jihyeon Kim et al.

CVPR 2024highlightarXiv:2402.17323
50
citations

Select and Distill: Selective Dual-Teacher Knowledge Transfer for Continual Learning on Vision-Language Models

Yu-Chu Yu, Chi-Pin Huang, Jr-Jen Chen et al.

ECCV 2024arXiv:2403.09296
16
citations

Self-Composing Policies for Scalable Continual Reinforcement Learning

Mikel Malagón, Josu Ceberio, Jose A Lozano

ICML 2024arXiv:2506.14811
10
citations

Stationary Latent Weight Inference for Unreliable Observations from Online Test-Time Adaptation

Jae-Hong Lee, Joon Hyuk Chang

ICML 2024

STSP: Spatial-Temporal Subspace Projection for Video Class-incremental Learning

Hao CHENG, SIYUAN YANG, Chong Wang et al.

ECCV 2024
6
citations

Task-aware Orthogonal Sparse Network for Exploring Shared Knowledge in Continual Learning

Yusong Hu, De Cheng, Dingwen Zhang et al.

ICML 2024

Towards Continual Knowledge Graph Embedding via Incremental Distillation

Jiajun Liu, Ke Wenjun, Peng Wang et al.

AAAI 2024paperarXiv:2405.04453
39
citations

Towards Continual Learning Desiderata via HSIC-Bottleneck Orthogonalization and Equiangular Embedding

Depeng Li, Tianqi Wang, Junwei Chen et al.

AAAI 2024paperarXiv:2401.09067
8
citations

Towards Efficient Replay in Federated Incremental Learning

Yichen Li, Qunwei Li, Haozhao Wang et al.

CVPR 2024arXiv:2403.05890
41
citations

Understanding Forgetting in Continual Learning with Linear Regression

Meng Ding, Kaiyi Ji, Di Wang et al.

ICML 2024arXiv:2405.17583
18
citations

UNIKD: UNcertainty-Filtered Incremental Knowledge Distillation for Neural Implicit Representation

Mengqi GUO, Chen Li, Hanlin Chen et al.

ECCV 2024arXiv:2212.10950
3
citations

What How and When Should Object Detectors Update in Continually Changing Test Domains?

Jayeon Yoo, Dongkwan Lee, Inseop Chung et al.

CVPR 2024arXiv:2312.08875
16
citations

What Will My Model Forget? Forecasting Forgotten Examples in Language Model Refinement

Xisen Jin, Xiang Ren

ICML 2024spotlightarXiv:2402.01865
8
citations