"federated learning" Papers

178 papers found • Page 3 of 4

Beyond the Federation: Topology-aware Federated Learning for Generalization to Unseen Clients

Mengmeng Ma, Tang Li, Xi Peng

ICML 2024arXiv:2407.04949
7
citations

Bridging Model Heterogeneity in Federated Learning via Uncertainty-based Asymmetrical Reciprocity Learning

Jiaqi Wang, Chenxu Zhao, Lingjuan Lyu et al.

ICML 2024arXiv:2407.03247
11
citations

Byzantine Resilient and Fast Federated Few-Shot Learning

Ankit Pratap Singh, Namrata Vaswani

ICML 2024

Byzantine-Robust Federated Learning: Impact of Client Subsampling and Local Updates

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui et al.

ICML 2024arXiv:2402.12780
13
citations

Certifiably Byzantine-Robust Federated Conformal Prediction

Mintong Kang, Zhen Lin, Jimeng Sun et al.

ICML 2024arXiv:2406.01960
5
citations

Clustered Federated Learning via Gradient-based Partitioning

Heasung Kim, Hyeji Kim, Gustavo De Veciana

ICML 2024

COALA: A Practical and Vision-Centric Federated Learning Platform

Weiming Zhuang, Jian Xu, Chen Chen et al.

ICML 2024arXiv:2407.16560
10
citations

Collaborative Heterogeneous Causal Inference Beyond Meta-analysis

Tianyu Guo, Sai Praneeth Karimireddy, Michael Jordan

ICML 2024arXiv:2404.15746
4
citations

DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain Generalization in Federated Learning

Sikai Bai, Jie ZHANG, Song Guo et al.

CVPR 2024arXiv:2403.08506
28
citations

Enhancing Storage and Computational Efficiency in Federated Multimodal Learning for Large-Scale Models

Zixin Zhang, Fan Qi, Changsheng Xu

ICML 2024

Exploiting Label Skews in Federated Learning with Model Concatenation

Yiqun Diao, Qinbin Li, Bingsheng He

AAAI 2024paperarXiv:2312.06290
37
citations

FADAS: Towards Federated Adaptive Asynchronous Optimization

Yujia Wang, Shiqiang Wang, Songtao Lu et al.

ICML 2024arXiv:2407.18365
13
citations

Fair Federated Learning via the Proportional Veto Core

Bhaskar Ray Chaudhury, Aniket Murhekar, Zhuowen Yuan et al.

ICML 2024

Feature Diversification and Adaptation for Federated Domain Generalization

Seunghan Yang, Seokeon Choi, Hyunsin Park et al.

ECCV 2024arXiv:2407.08245
5
citations

FedASMU: Efficient Asynchronous Federated Learning with Dynamic Staleness-Aware Model Update

Ji Liu, Juncheng Jia, Tianshi Che et al.

AAAI 2024paperarXiv:2312.05770
75
citations

FedBAT: Communication-Efficient Federated Learning via Learnable Binarization

Shiwei Li, Wenchao Xu, Haozhao Wang et al.

ICML 2024arXiv:2408.03215
12
citations

FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models

Jingwei Sun, Ziyue Xu, Hongxu Yin et al.

ICML 2024arXiv:2310.01467
36
citations

FedCal: Achieving Local and Global Calibration in Federated Learning via Aggregated Parameterized Scaler

Hongyi Peng, Han Yu, Xiaoli Tang et al.

ICML 2024arXiv:2405.15458
9
citations

FedCompetitors: Harmonious Collaboration in Federated Learning with Competing Participants

Shanli Tan, Hao Cheng, Xiaohu Wu et al.

AAAI 2024paperarXiv:2312.11391
6
citations

FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning

Haokun Chen, Yao Zhang, Denis Krompass et al.

AAAI 2024paperarXiv:2308.12305
86
citations

FedDiv: Collaborative Noise Filtering for Federated Learning with Noisy Labels

Authors: Jichang Li, Guanbin Li, Hui Cheng et al.

AAAI 2024paperarXiv:2312.12263
27
citations

Federated Adaptive Prompt Tuning for Multi-Domain Collaborative Learning

Shangchao Su, Mingzhao Yang, Bin Li et al.

AAAI 2024paperarXiv:2211.07864
38
citations

Federated Combinatorial Multi-Agent Multi-Armed Bandits

Fares Fourati, Mohamed-Slim Alouini, Vaneet Aggarwal

ICML 2024arXiv:2405.05950
8
citations

Federated Contextual Cascading Bandits with Asynchronous Communication and Heterogeneous Users

Hantao Yang, Xutong Liu, Zhiyong Wang et al.

AAAI 2024paperarXiv:2402.16312
9
citations

Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes

Zhen Qin, Daoyuan Chen, Bingchen Qian et al.

ICML 2024arXiv:2312.06353
61
citations

Federated Generalized Category Discovery

Nan Pu, Wenjing Li, Xinyuan Ji et al.

CVPR 2024arXiv:2305.14107
25
citations

Federated Learning with Extremely Noisy Clients via Negative Distillation

Yang Lu, Lin Chen, Yonggang Zhang et al.

AAAI 2024paperarXiv:2312.12703
21
citations

Federated Neuro-Symbolic Learning

Pengwei Xing, Songtao Lu, Han Yu

ICML 2024arXiv:2308.15324
5
citations

Federated Optimization with Doubly Regularized Drift Correction

Xiaowen Jiang, Anton Rodomanov, Sebastian Stich

ICML 2024arXiv:2404.08447
14
citations

Federated Self-Explaining GNNs with Anti-shortcut Augmentations

Linan Yue, Qi Liu, Weibo Gao et al.

ICML 2024

FedFixer: Mitigating Heterogeneous Label Noise in Federated Learning

Xinyuan Ji, Zhaowei Zhu, Wei Xi et al.

AAAI 2024paperarXiv:2403.16561
20
citations

FedHARM: Harmonizing Model Architectural Diversity in Federated Learning

Anestis Kastellos, Athanasios Psaltis, Charalampos Z Patrikakis et al.

ECCV 2024

FedHide: Federated Learning by Hiding in the Neighbors

Hyunsin Park, Sungrack Yun

ECCV 2024arXiv:2409.07808

FedLMT: Tackling System Heterogeneity of Federated Learning via Low-Rank Model Training with Theoretical Guarantees

Jiahao Liu, Yipeng Zhou, Di Wu et al.

ICML 2024

FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local Parameter Sharing

Yongzhe Jia, Xuyun Zhang, Amin Beheshti et al.

AAAI 2024paperarXiv:2402.08578
11
citations

FedMef: Towards Memory-efficient Federated Dynamic Pruning

Hong Huang, Weiming Zhuang, Chen Chen et al.

CVPR 2024arXiv:2403.14737
18
citations

FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning

Jian Li, Yong Liu, Wei Wang et al.

AAAI 2024paperarXiv:2401.02734
7
citations

Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth and Data Heterogeneity

Yiyue Chen, Haris Vikalo, Chianing Wang

AAAI 2024paperarXiv:2312.13380
13
citations

FedRA: A Random Allocation Strategy for Federated Tuning to Unleash the Power of Heterogeneous Clients

Shangchao Su, Bin Li, Xiangyang Xue

ECCV 2024arXiv:2311.11227
21
citations

FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering

Yongxin Guo, Xiaoying Tang, Tao Lin

ICML 2024arXiv:2301.12379
25
citations

FedREDefense: Defending against Model Poisoning Attacks for Federated Learning using Model Update Reconstruction Error

Yueqi Xie, Minghong Fang, Neil Gong

ICML 2024

FedSC: Provable Federated Self-supervised Learning with Spectral Contrastive Objective over Non-i.i.d. Data

Shusen Jing, Anlan Yu, Shuai Zhang et al.

ICML 2024arXiv:2405.03949
3
citations

FedTSA: A Cluster-based Two-Stage Aggregation Method for Model-heterogeneous Federated Learning

Boyu Fan, Chenrui Wu, Xiang Su et al.

ECCV 2024arXiv:2407.05098
4
citations

FedVAD: Enhancing Federated Video Anomaly Detection with GPT-Driven Semantic Distillation

Fan Qi, Ruijie Pan, Huaiwen Zhang et al.

ECCV 2024
2
citations

Fisher Calibration for Backdoor-Robust Heterogeneous Federated Learning

Wenke Huang, Mang Ye, zekun shi et al.

ECCV 2024
7
citations

Formal Logic Enabled Personalized Federated Learning through Property Inference

Ziyan An, Taylor Johnson, Meiyi Ma

AAAI 2024paperarXiv:2401.07448
6
citations

Improved Modelling of Federated Datasets using Mixtures-of-Dirichlet-Multinomials

Jonathan Scott, Aine E Cahill

ICML 2024arXiv:2406.02416
1
citations

Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data from Federated Learning

Joshua C. Zhao, Ahaan Dabholkar, Atul Sharma et al.

CVPR 2024arXiv:2403.18144
4
citations

Lessons from Generalization Error Analysis of Federated Learning: You May Communicate Less Often!

Milad Sefidgaran, Romain Chor, Abdellatif Zaidi et al.

ICML 2024arXiv:2306.05862
10
citations

Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization

Ziqing Fan, Shengchao Hu, Jiangchao Yao et al.

ICML 2024spotlightarXiv:2405.18890
33
citations