Poster "graph neural networks" Papers

208 papers found • Page 3 of 5

Rethinking Graph Neural Networks From A Geometric Perspective Of Node Features

Feng Ji, Yanan Zhao, KAI ZHAO et al.

ICLR 2025

Rethinking Graph Prompts: Unraveling the Power of Data Manipulation in Graph Neural Networks

Chenyi Zi, Bowen LIU, Xiangguo SUN et al.

ICLR 2025

Rethinking the role of frames for SE(3)-invariant crystal structure modeling

Yusei Ito, Tatsunori Taniai, Ryo Igarashi et al.

ICLR 2025arXiv:2503.02209
8
citations

Revisiting Random Walks for Learning on Graphs

Jinwoo Kim, Olga Zaghen, Ayhan Suleymanzade et al.

ICLR 2025arXiv:2407.01214
8
citations

RTop-K: Ultra-Fast Row-Wise Top-K Selection for Neural Network Acceleration on GPUs

Xi Xie, Yuebo Luo, Hongwu Peng et al.

ICLR 2025arXiv:2409.00822
3
citations

Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function

Maria-Florina Balcan, Anh Nguyen, Dravyansh Sharma

NEURIPS 2025arXiv:2501.13734
9
citations

Scalable and Certifiable Graph Unlearning: Overcoming the Approximation Error Barrier

Lu Yi, Zhewei Wei

ICLR 2025arXiv:2408.09212
10
citations

Self-Supervised Discovery of Neural Circuits in Spatially Patterned Neural Responses with Graph Neural Networks

Kijung Yoon

NEURIPS 2025arXiv:2509.17174

SignFlow Bipartite Subgraph Network For Large-Scale Graph Link Sign Prediction

Yixiao Zhou, Xiaoqing Lyu, Hongxiang Lin et al.

NEURIPS 2025

SINGER: Stochastic Network Graph Evolving Operator for High Dimensional PDEs

Mingquan Feng, Yixin Huang, Weixin Liao et al.

ICLR 2025
1
citations

Sketch-Augmented Features Improve Learning Long-Range Dependencies in Graph Neural Networks

Ryien Hosseini, Filippo Simini, Venkatram Vishwanath et al.

NEURIPS 2025arXiv:2511.03824

S'MoRE: Structural Mixture of Residual Experts for Parameter-Efficient LLM Fine-tuning

Hanqing Zeng, Yinglong Xia, Zhuokai Zhao et al.

NEURIPS 2025arXiv:2504.06426
2
citations

SONAR: Long-Range Graph Propagation Through Information Waves

Alessandro Trenta, Alessio Gravina, Davide Bacciu

NEURIPS 2025

Sound Logical Explanations for Mean Aggregation Graph Neural Networks

Matthew Morris, Ian Horrocks

NEURIPS 2025arXiv:2511.11593
1
citations

Spreading Out-of-Distribution Detection on Graphs

Daeho Um, Jongin Lim, Sunoh Kim et al.

ICLR 2025
6
citations

SSTAG: Structure-Aware Self-Supervised Learning Method for Text-Attributed Graphs

Ruyue Liu, Rong Yin, Xiangzhen Bo et al.

NEURIPS 2025arXiv:2510.01248
1
citations

Stealthy Yet Effective: Distribution-Preserving Backdoor Attacks on Graph Classification

Xiaobao Wang, Ruoxiao Sun, Yujun Zhang et al.

NEURIPS 2025arXiv:2509.26032
2
citations

Taxonomy of reduction matrices for Graph Coarsening

Antonin Joly, Nicolas Keriven, Aline Roumy

NEURIPS 2025arXiv:2506.11743
1
citations

The Effectiveness of Curvature-Based Rewiring and the Role of Hyperparameters in GNNs Revisited

Floriano Tori, Vincent Holst, Vincent Ginis

ICLR 2025arXiv:2407.09381
8
citations

The Underappreciated Power of Vision Models for Graph Structural Understanding

Xinjian Zhao, Wei Pang, Zhongkai Xue et al.

NEURIPS 2025arXiv:2510.24788
2
citations

Topological Blindspots: Understanding and Extending Topological Deep Learning Through the Lens of Expressivity

Yam Eitan, Yoav Gelberg, Guy Bar-Shalom et al.

ICLR 2025arXiv:2408.05486
11
citations

Towards a Complete Logical Framework for GNN Expressiveness

Tuo Xu

ICLR 2025

Towards Explaining the Power of Constant-depth Graph Neural Networks for Structured Linear Programming

Qian Li, Minghui Ouyang, Tian Ding et al.

ICLR 2025
1
citations

Training Robust Graph Neural Networks by Modeling Noise Dependencies

Yeonjun In, Kanghoon Yoon, Sukwon Yun et al.

NEURIPS 2025arXiv:2502.19670

Uncertainty Modeling in Graph Neural Networks via Stochastic Differential Equations

Richard Bergna, Sergio Calvo Ordoñez, Felix Opolka et al.

ICLR 2025arXiv:2408.16115
8
citations

UniGTE: Unified Graph–Text Encoding for Zero-Shot Generalization across Graph Tasks and Domains

Duo Wang, Yuan Zuo, Guangyue Lu et al.

NEURIPS 2025arXiv:2510.16885

Unsupervised Federated Graph Learning

Lele Fu, Tianchi Liao, Sheng Huang et al.

NEURIPS 2025

Valid Conformal Prediction for Dynamic GNNs

Ed Davis, Ian Gallagher, Daniel Lawson et al.

ICLR 2025arXiv:2405.19230
7
citations

When GNNs meet symmetry in ILPs: an orbit-based feature augmentation approach

Qian Chen, Lei Li, Qian Li et al.

ICLR 2025arXiv:2501.14211
1
citations

Aligning Transformers with Weisfeiler-Leman

Luis Müller, Christopher Morris

ICML 2024arXiv:2406.03148
6
citations

An Empirical Study of Realized GNN Expressiveness

Yanbo Wang, Muhan Zhang

ICML 2024arXiv:2304.07702
25
citations

Automated Loss function Search for Class-imbalanced Node Classification

Xinyu Guo, KAI WU, Xiaoyu Zhang et al.

ICML 2024arXiv:2405.14133
2
citations

Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs

Shenzhi Yang, Bin Liang, An Liu et al.

ICML 2024arXiv:2504.13429
10
citations

Collective Certified Robustness against Graph Injection Attacks

Yuni Lai, Bailin PAN, kaihuang CHEN et al.

ICML 2024arXiv:2403.01423
4
citations

Cooperative Graph Neural Networks

Ben Finkelshtein, Xingyue Huang, Michael Bronstein et al.

ICML 2024arXiv:2310.01267
52
citations

Delaunay Graph: Addressing Over-Squashing and Over-Smoothing Using Delaunay Triangulation

Hugo Attali, Davide Buscaldi, Nathalie Pernelle

ICML 2024

DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly

Gianluca Scarpellini, Stefano Fiorini, Francesco Giuliari et al.

CVPR 2024arXiv:2402.19302
28
citations

DiffDA: a Diffusion model for weather-scale Data Assimilation

Langwen Huang, Lukas Gianinazzi, Yuejiang Yu et al.

ICML 2024arXiv:2401.05932
70
citations

Disentangled Graph Self-supervised Learning for Out-of-Distribution Generalization

Haoyang Li, Xin Wang, Zeyang Zhang et al.

ICML 2024

EiG-Search: Generating Edge-Induced Subgraphs for GNN Explanation in Linear Time

Shengyao Lu, Bang Liu, Keith Mills et al.

ICML 2024arXiv:2405.01762
7
citations

Empowering Graph Invariance Learning with Deep Spurious Infomax

Tianjun Yao, Yongqiang Chen, Zhenhao Chen et al.

ICML 2024arXiv:2407.11083
19
citations

Enhancing Size Generalization in Graph Neural Networks through Disentangled Representation Learning

Zheng Huang, Qihui Yang, Dawei Zhou et al.

ICML 2024arXiv:2406.04601
8
citations

Explaining Graph Neural Networks via Structure-aware Interaction Index

Ngoc Bui, Trung Hieu Nguyen, Viet Anh Nguyen et al.

ICML 2024arXiv:2405.14352
12
citations

Expressivity and Generalization: Fragment-Biases for Molecular GNNs

Tom Wollschläger, Niklas Kemper, Leon Hetzel et al.

ICML 2024arXiv:2406.08210
11
citations

Feature Distribution on Graph Topology Mediates the Effect of Graph Convolution: Homophily Perspective

Soo Yong Lee, Sunwoo Kim, Fanchen Bu et al.

ICML 2024arXiv:2402.04621
10
citations

Federated Self-Explaining GNNs with Anti-shortcut Augmentations

Linan Yue, Qi Liu, Weibo Gao et al.

ICML 2024

From Coarse to Fine: Enable Comprehensive Graph Self-supervised Learning with Multi-granular Semantic Ensemble

Qianlong Wen, Mingxuan Ju, Zhongyu Ouyang et al.

ICML 2024

From Geometry to Causality- Ricci Curvature and the Reliability of Causal Inference on Networks

Amirhossein Farzam, Allen Tannenbaum, Guillermo Sapiro

ICML 2024

Generalization Error of Graph Neural Networks in the Mean-field Regime

Gholamali Aminian, Yixuan He, Gesine Reinert et al.

ICML 2024arXiv:2402.07025
4
citations

Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks

Zhuomin Chen, Jiaxing Zhang, Jingchao Ni et al.

ICML 2024arXiv:2402.02036
7
citations