Poster Papers

24,624 papers found • Page 482 of 493

Uncertainty-aware sign language video retrieval with probability distribution modeling

Xuan Wu, Hongxiang Li, yuanjiang luo et al.

ECCV 2024arXiv:2405.19689
10
citations

Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer

Yuang Ai, Xiaoqiang Zhou, Huaibo Huang et al.

CVPR 2024arXiv:2303.17783
9
citations

Uncertainty Calibration with Energy Based Instance-wise Scaling in the Wild Dataset

Mijoo Kim, Junseok Kwon

ECCV 2024arXiv:2407.12330
3
citations

Uncertainty-Driven Spectral Compressive Imaging with Spatial-Frequency Transformer

Lintao Peng, Siyu Xie, Liheng Bian

ECCV 2024

Uncertainty Estimation by Density Aware Evidential Deep Learning

Taeseong Yoon, Heeyoung Kim

ICML 2024arXiv:2409.08754
10
citations

Uncertainty for Active Learning on Graphs

Dominik Fuchsgruber, Tom Wollschläger, Bertrand Charpentier et al.

ICML 2024arXiv:2405.01462
17
citations

Uncertainty-Guided Never-Ending Learning to Drive

Lei Lai, Eshed Ohn-Bar, Sanjay Arora et al.

CVPR 2024

Uncertainty Quantification via Stable Distribution Propagation

Felix Petersen, Aashwin Mishra, Hilde Kuehne et al.

ICLR 2024arXiv:2402.08324
9
citations

Uncertainty Visualization via Low-Dimensional Posterior Projections

Omer Yair, Tomer Michaeli, Elias Nehme

CVPR 2024arXiv:2312.07804
3
citations

Unconstrained Stochastic CCA: Unifying Multiview and Self-Supervised Learning

James Chapman, Lennie Wells, Ana Lawry Aguila

ICLR 2024arXiv:2310.01012
2
citations

Uncovering What Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly

Hang Du, Sicheng Zhang, Binzhu Xie et al.

CVPR 2024arXiv:2405.00181
44
citations

Understanding Adam Optimizer via Online Learning of Updates: Adam is FTRL in Disguise

Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook et al.

ICML 2024arXiv:2402.01567
22
citations

Understanding Addition in Transformers

Philip Quirke, Fazl Barez

ICLR 2024arXiv:2310.13121
30
citations

Understanding and Diagnosing Deep Reinforcement Learning

Ezgi Korkmaz

ICML 2024arXiv:2406.16979
7
citations

Understanding and Improving Source-free Domain Adaptation from a Theoretical Perspective

Yu Mitsuzumi, Akisato Kimura, Hisashi Kashima

CVPR 2024

Understanding and Mitigating Human-Labelling Errors in Supervised Contrastive Learning

Zijun Long, Lipeng Zhuang, George W Killick et al.

ECCV 2024arXiv:2403.06289
1
citations

Understanding Catastrophic Forgetting in Language Models via Implicit Inference

Suhas Kotha, Jacob Springer, Aditi Raghunathan

ICLR 2024arXiv:2309.10105
114
citations

Understanding Certified Training with Interval Bound Propagation

Yuhao Mao, Mark N Müller, Marc Fischer et al.

ICLR 2024arXiv:2306.10426
23
citations

Understanding Convergence and Generalization in Federated Learning through Feature Learning Theory

Wei Huang, Ye Shi, Zhongyi Cai et al.

ICLR 2024

Understanding Diffusion Models by Feynman's Path Integral

Yuji Hirono, Akinori Tanaka, Kenji Fukushima

ICML 2024arXiv:2403.11262
11
citations

Understanding Domain Generalization: A Noise Robustness Perspective

Rui Qiao, Bryan Kian Hsiang Low

ICLR 2024arXiv:2401.14846
8
citations

Understanding Expressivity of GNN in Rule Learning

Haiquan Qiu, Yongqi Zhang, Yong Li et al.

ICLR 2024arXiv:2303.12306
9
citations

Understanding Finetuning for Factual Knowledge Extraction

Gaurav Ghosal, Tatsunori Hashimoto, Aditi Raghunathan

ICML 2024arXiv:2406.14785
28
citations

Understanding Forgetting in Continual Learning with Linear Regression

Meng Ding, Kaiyi Ji, Di Wang et al.

ICML 2024arXiv:2405.17583
18
citations

Understanding Heterophily for Graph Neural Networks

Junfu Wang, Yuanfang Guo, Liang Yang et al.

ICML 2024arXiv:2401.09125
18
citations

Understanding In-Context Learning from Repetitions

Jianhao (Elliott) Yan, Jin Xu, Chiyu Song et al.

ICLR 2024arXiv:2310.00297
30
citations

Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions

Satwik Bhattamishra, Arkil Patel, Phil Blunsom et al.

ICLR 2024arXiv:2310.03016
75
citations

Understanding Inter-Concept Relationships in Concept-Based Models

Naveen Raman, Mateo Espinosa Zarlenga, Mateja Jamnik

ICML 2024arXiv:2405.18217
10
citations

Understanding MLP-Mixer as a wide and sparse MLP

Tomohiro Hayase, Ryo Karakida

ICML 2024arXiv:2306.01470
8
citations

Understanding Multi-compositional learning in Vision and Language models via Category Theory

Sotirios Panagiotis Takis Chytas, Hyunwoo J. Kim, Vikas Singh

ECCV 2024
5
citations

Understanding Physical Dynamics with Counterfactual World Modeling

Rahul Mysore Venkatesh, Honglin Chen, Kevin Feigelis et al.

ECCV 2024arXiv:2312.06721
7
citations

Understanding prompt engineering may not require rethinking generalization

Victor Akinwande, Yiding Jiang, Dylan Sam et al.

ICLR 2024arXiv:2310.03957
10
citations

Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang et al.

ICML 2024arXiv:2402.03268
25
citations

Understanding Reconstruction Attacks with the Neural Tangent Kernel and Dataset Distillation

Noel Loo, Ramin Hasani, Mathias Lechner et al.

ICLR 2024arXiv:2302.01428
13
citations

Understanding Retrieval-Augmented Task Adaptation for Vision-Language Models

Yifei Ming, Sharon Li

ICML 2024arXiv:2405.01468
10
citations

Understanding Server-Assisted Federated Learning in the Presence of Incomplete Client Participation

Haibo Yang, Peiwen Qiu, Prashant Khanduri et al.

ICML 2024arXiv:2405.02745
8
citations

Understanding Stochastic Natural Gradient Variational Inference

Kaiwen Wu, Jacob Gardner

ICML 2024arXiv:2406.01870
7
citations

Understanding the Effects of Iterative Prompting on Truthfulness

Satyapriya Krishna, Chirag Agarwal, Himabindu Lakkaraju

ICML 2024arXiv:2402.06625
21
citations

Understanding the Effects of RLHF on LLM Generalisation and Diversity

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis et al.

ICLR 2024arXiv:2310.06452
287
citations

Understanding the Impact of Introducing Constraints at Inference Time on Generalization Error

Masaaki Nishino, Kengo Nakamura, Norihito Yasuda

ICML 2024

Understanding the Learning Dynamics of Alignment with Human Feedback

Shawn Im, Sharon Li

ICML 2024arXiv:2403.18742
18
citations

Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods

Avery Ma, Yangchen Pan, Amir-massoud Farahmand

ICLR 2024arXiv:2308.06703
9
citations

Understanding the Robustness of Multi-modal Contrastive Learning to Distribution Shift

Yihao Xue, Siddharth Joshi, Dang Nguyen et al.

ICLR 2024arXiv:2310.04971
5
citations

Understanding the Robustness of Randomized Feature Defense Against Query-Based Adversarial Attacks

Hung Quang Nguyen, Yingjie Lao, Tung Pham et al.

ICLR 2024arXiv:2310.00567
1
citations

Understanding the Training Speedup from Sampling with Approximate Losses

Rudrajit Das, Xi Chen, Bertram Ieong et al.

ICML 2024arXiv:2402.07052
4
citations

Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP

Zixiang Chen, Yihe Deng, Yuanzhi Li et al.

ICLR 2024arXiv:2310.00927
20
citations

Understanding Unimodal Bias in Multimodal Deep Linear Networks

Yedi Zhang, Peter Latham, Andrew Saxe

ICML 2024arXiv:2312.00935
16
citations

Understanding when Dynamics-Invariant Data Augmentations Benefit Model-free Reinforcement Learning Updates

Nicholas Corrado, Josiah Hanna

ICLR 2024arXiv:2310.17786
6
citations

Un-EVIMO: Unsupervised Event-based Independent Motion Segmentation

Ziyun Wang, Jinyuan Guo, Kostas Daniilidis

ECCV 2024arXiv:2312.00114
9
citations

Unexplored Faces of Robustness and Out-of-Distribution: Covariate Shifts in Environment and Sensor Domains

Eunsu Baek, Keondo Park, Ji-yoon Kim et al.

CVPR 2024arXiv:2404.15882
12
citations