Paper "differential privacy" Papers

11 papers found

A New Federated Learning Framework Against Gradient Inversion Attacks

Pengxin Guo, Shuang Zeng, Wenhao Chen et al.

AAAI 2025paperarXiv:2412.07187
8
citations

Differentially Private Prototypes for Imbalanced Transfer Learning

Dariush Wahdany, Matthew Jagielski, Adam Dziedzic et al.

AAAI 2025paperarXiv:2406.08039
2
citations

DP-MemArc: Differential Privacy Transfer Learning for Memory Efficient Language Models

Yanming Liu, Xinyue Peng, Yuwei Zhang et al.

AAAI 2025paperarXiv:2406.11087
3
citations

Federated Binary Matrix Factorization Using Proximal Optimization

Sebastian Dalleiger, Jilles Vreeken, Michael Kamp

AAAI 2025paperarXiv:2407.01776

Federated t-SNE and UMAP for Distributed Data Visualization

Dong Qiao, Xinxian Ma, Jicong Fan

AAAI 2025paperarXiv:2412.13495
2
citations

Privately Learning from Graphs with Applications in Fine-tuning Large Language Models

Haoteng Yin, Rongzhe Wei, Eli Chien et al.

COLM 2025paperarXiv:2410.08299
1
citations

PrivateXR: Defending Privacy Attacks in Extended Reality Through Explainable AI-Guided Differential Privacy

Ripan Kumar Kundu, Istiak Ahmed, Khaza Anuarul Hoque

ISMAR 2025paperarXiv:2512.16851

DP-AdamBC: Your DP-Adam Is Actually DP-SGD (Unless You Apply Bias Correction)

Qiaoyue Tang, Frederick Shpilevskiy, Mathias Lécuyer

AAAI 2024paperarXiv:2312.14334
30
citations

No Prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation

Nimesh Agrawal, Anuj Sirohi, Sandeep Kumar et al.

AAAI 2024paperarXiv:2312.10080
39
citations

Poincaré Differential Privacy for Hierarchy-Aware Graph Embedding

Yuecen Wei, Haonan Yuan, Xingcheng Fu et al.

AAAI 2024paperarXiv:2312.12183
11
citations

Privacy Amplification by Iteration for ADMM with (Strongly) Convex Objective Functions

T-H. Hubert Chan, Hao Xie, Mengshi ZHAO

AAAI 2024paperarXiv:2312.08685
1
citations